Exploring Genetic Diversity and Population Structure of Turkish Black Sea Region Maize (Zea mays L.) Germplasm using SSR Markers
Year 2022,
Volume: 15 Issue: 3, 953 - 963, 30.12.2022
Nurettin Baran
,
Muhammad Azhar Nadeem
,
Abdurrahim Yılmaz
,
Mehtap Andırman
,
Fırat Kurt
,
Gültekin Temiz
,
Faheem Baloch
Abstract
Plant landraces are heterogeneous plant populations that have adapted to local environmental conditions and serve as a source of genetic variations that can be used for the breeding perspectives. Studies regarding genetic diversity assessment are very important as they provide an opportunity for the scientific community to investigate novel genetic variations for the genetic improvement of crops. Maize is one of the most important cereal crops and provides daily calories to millions of people all over the world. This study aimed to investigate the genetic diversity and population structure of 32 local maize genotypes collected from the Black Sea Region of Turkey using SSR markers. Molecular characterization was performed using the 14 most polymorphic primers that yielded a total of 42 bands. An average of 3 alleles per SSR primer was detected, and the number of alleles varied from 1 (phi022) to 6 (umc1571). The unweighted pair-group method with arithmetic means (UPGMA) clustering divided maize accessions into three main populations. According to Nei's genetic distances, DZ-M-145 (Corum) and DZ-M-20 (Trabzon) genotypes were the closest (0.03) genetically related populations, while DZ-M-68 (Artvin) and DZ-M-55 (Rize) were the most genetically distant (0.63) populations. The study identified molecular genetic diversity not mentioned for maize plants from the Black Sea. On this occasion, new opportunities have been created for hybrid maize products.
Supporting Institution
Dicle University Scientific Research Project Coordination
Project Number
ZIRAAT.16.006.
References
- Aci, M. M., Lupini, A., Mauceri, A., Morsli, A., Khelifi, L., Sunseri, F., (2018). Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC genetics, 19(1), 51.
- Al-Badeiry, N. A. H., Al-Saadi, A. H., Merza, T. K., (2014). Analysis of Genetic Diversity in Maize (Zea mays L.) Varieties Using SimpleSequence Repeat (SSR) Markers. J. Babylon Uni. Pure Appl. Sci. 22(6):1768-1776.
- Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., ... & Beemster, G. T., (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant physiology, 169(2), 1382-1396.
- Baloch, F.S., Alsaleh, A, Andeden, E.E., Hatipoglu, R, Nachit, M, Ozkan, H., (2016). High levels of segregation distortion in the Molecular linkage map of bread wheat representing West Asia and NorthAfrica region. Turk J Agric For. 40:352–364
- Baloch, F.S., Alsaleh, A., de Miera, L.E.S., Hatipoglu, R., Ciftci, V., Karakoy, T., Yıldız, M., Ozkan, H., (2015). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisumsativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252
- Barcaccia, G., Lucchin, M., Parrini, P., (2003). Characterization of a flint maize (Zea mays var. indurata) Italian landrace, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genetic Resources and Crop Evolution, 50(3), 253-271.
- Belalia, N., Lupini, A., Djemel, A., Morsli, A., Mauceri, A., Lotti, C., ... & Sunseri, F., (2019). Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genetic Resources and Crop Evolution, 66(1), 243-257.
- Boopathi, N.M., (2013). Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, New Delhi.
- Doyle, J.J., Doyle, J.L., (1990). Isolation of plant DNA from fresh tissue, Focus 12:13-15.
- Evanno, G., Regnaut, S., Goudet, J., (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.
- Garrido-Cardenas, J. A., Mesa-Valle, C., Manzano-Agugliaro, F., (2018). Trends in plant research using molecular markers. Planta, 247(3), 543-557.
- Gedik, A., Duygu, A.T.E.S., Erdogmus, S., Comertpay, G., Tanyolac, M.B., Ozkan, H., (2017). Genetic diversity of Crocus sativus and its close relative species analyzed by iPBS-retrotransposons. Turk. J. Agric. For. 22, 243–252.
- Joshi, B. K., Rawat, J., Adhikari, B., Pokhrel, R., (2020). SSR Markers Based Genetic Diversity in Nepalese Maize Landraces. SAARC Journal of Agriculture, 18(1), 23-37.
- Kashiani, P., Saleh, G., Panandam, J.M., Abdullah, N.A.P., Selamat, A., (2012). Molecular characterization of tropical sweet corn inbredlines using microsatellite markers. Maydica 57 : 154-163
- Kumari, A., Sinha, S., Rashmi, K., Mandal, S. S., Sahay, S., (2018). Genetic diversity analysis in maize (Zea mays L.) using SSR markers. Journal of Pharmacognosy and Phytochemistry, 1, 1116-1120.
- Lenka, D., Tripathy, S.K., Kumar, R., Behera, M., Ranjan, R., (2015). Assessment of genetic diversity in quality protein maize (QPM) inbreds using ISSR markers. J. Environ. Biol. 36:985-992
- Morgante, M., Olivieri, A. M., (1993). PCR‐amplified microsatellites as markers in plant genetics. The plant journal, 3(1), 175-182.
- Nei, M., (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.
- Nemli, S., Kianoosh, T., Tanyolac, M.B., (2015). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based inter primer binding sites (iPBSs) markers. Turk. J.Agric. For. 39, 940–948.
- Nyaligwa, L., (2016). Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica, 60(3), 1-8.
- Omere, E. A., Nwaoguala, C. N., Emede, T. O., (2019). Microsatellite DNA Marker For Molecular Characterization of African Maize (Zea mays L.) Landraces. Journal of Microbiology, Biotechnology and Food Sciences, 976-978.
- Pachauri, A., Sarawgi, A. K., Bhandarkar, S., Ojha, G. C., (2017). Genetic variability and association study for yield contributing traits of promising core rice germplasm accessions (Oryza sativa L.). Research on Crops, 18(1), 133-138.
- Pour, A. H., Karahan, F., Ilhan, E., Ilçim, A., Haliloglu, K., (2019). Genetic structure and diversity of Adonis L. (Ranunculaceae) populations collected from Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk. J. Bot. 43, 585–596.
- Saiyad, M. M., Kumar, S., (2018). Evaluation of maize genotypes for fodder quality traits and SSR diversity. Journal of Plant Biochemistry and Biotechnology, 27(1), 78-89.
- Schliep, K. P., (2011). Phangorn: phylogenetic analysis in R. Bioinformatics, 27(4), 592-593.
- Sharma, L., Prasanna, B.M., Ramesh, B., (2010). Analysis ofphenotypic and microsatellite-based diversity of maizelandraces in India, especially from the Northeast Himalayanregion. Genetica 138: 619-631
- Sharma, T., Kumar, A., Dwivedi, S. C., Vyas, R. P., (2018). Molecular characterization and genetic diversity analysis of selected maize inbreds using SSR markers. Journal of Environmental Biology, 39(2), 228-236.
- Shukla, N., Kuntal, H., Shanker, A., Sharma, S. N., (2018). Mining and analysis of simple sequence repeats in the chloroplast genomes of genus Vigna. Biotechnology Research and Innovation, 2(1), 9-18.
- Solouki, M.; Mehdikhani, H.; Zeinali, H.; Emamjomeh, A.A., (2018). Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci. Hortic. 117, 281–287.
- Van Heerwaarden, J., Doebley, J., Briggs, W. H., Glaubitz, J. C., Goodman, M. M., Gonzalez, J. D. J. S., Ross-Ibarra, J., (2011). Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences, 108(3), 1088-1092.
- Vigouroux, Y., Glaubitz, J.C., Matsuoka, Y., Goodman, M.M., Sánchez, J., Doebley, J., (2008). Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Amer. J. Bot. 95: 1240-1253.
- Warburton, M.L., Wilkes, G., Taba, S., Charcosset, A., Mir, C., Dumas, F., Madur, D., Dreisigacker, S., Bedoya, C., Prasanna, B.M., Xie C.X., (2011). Gene flow among different teosinte taxa and intothe domesticated maize gene pool. Genet. Res. Crop. Evol.58: 1243-1261.
- Yang, F., Liao, D., Wu, X., Gao, R., Fan, Y., Raza, M. A., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W., (2017). Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 203, 16-23.
- Yeh, F.C., Yang, R., Boyle, T.J., Ye, Z., Xiyan, J.M., (2000). PopGene32, Microsoft Windows-based freeware for population genetic analysis, Version 1.32. Molecular Biology and Biotechnology Centre,University of Alberta, Edmonton, Alberta, Canada.
Year 2022,
Volume: 15 Issue: 3, 953 - 963, 30.12.2022
Nurettin Baran
,
Muhammad Azhar Nadeem
,
Abdurrahim Yılmaz
,
Mehtap Andırman
,
Fırat Kurt
,
Gültekin Temiz
,
Faheem Baloch
Project Number
ZIRAAT.16.006.
References
- Aci, M. M., Lupini, A., Mauceri, A., Morsli, A., Khelifi, L., Sunseri, F., (2018). Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC genetics, 19(1), 51.
- Al-Badeiry, N. A. H., Al-Saadi, A. H., Merza, T. K., (2014). Analysis of Genetic Diversity in Maize (Zea mays L.) Varieties Using SimpleSequence Repeat (SSR) Markers. J. Babylon Uni. Pure Appl. Sci. 22(6):1768-1776.
- Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., ... & Beemster, G. T., (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant physiology, 169(2), 1382-1396.
- Baloch, F.S., Alsaleh, A, Andeden, E.E., Hatipoglu, R, Nachit, M, Ozkan, H., (2016). High levels of segregation distortion in the Molecular linkage map of bread wheat representing West Asia and NorthAfrica region. Turk J Agric For. 40:352–364
- Baloch, F.S., Alsaleh, A., de Miera, L.E.S., Hatipoglu, R., Ciftci, V., Karakoy, T., Yıldız, M., Ozkan, H., (2015). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisumsativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252
- Barcaccia, G., Lucchin, M., Parrini, P., (2003). Characterization of a flint maize (Zea mays var. indurata) Italian landrace, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genetic Resources and Crop Evolution, 50(3), 253-271.
- Belalia, N., Lupini, A., Djemel, A., Morsli, A., Mauceri, A., Lotti, C., ... & Sunseri, F., (2019). Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genetic Resources and Crop Evolution, 66(1), 243-257.
- Boopathi, N.M., (2013). Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, New Delhi.
- Doyle, J.J., Doyle, J.L., (1990). Isolation of plant DNA from fresh tissue, Focus 12:13-15.
- Evanno, G., Regnaut, S., Goudet, J., (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611-2620.
- Garrido-Cardenas, J. A., Mesa-Valle, C., Manzano-Agugliaro, F., (2018). Trends in plant research using molecular markers. Planta, 247(3), 543-557.
- Gedik, A., Duygu, A.T.E.S., Erdogmus, S., Comertpay, G., Tanyolac, M.B., Ozkan, H., (2017). Genetic diversity of Crocus sativus and its close relative species analyzed by iPBS-retrotransposons. Turk. J. Agric. For. 22, 243–252.
- Joshi, B. K., Rawat, J., Adhikari, B., Pokhrel, R., (2020). SSR Markers Based Genetic Diversity in Nepalese Maize Landraces. SAARC Journal of Agriculture, 18(1), 23-37.
- Kashiani, P., Saleh, G., Panandam, J.M., Abdullah, N.A.P., Selamat, A., (2012). Molecular characterization of tropical sweet corn inbredlines using microsatellite markers. Maydica 57 : 154-163
- Kumari, A., Sinha, S., Rashmi, K., Mandal, S. S., Sahay, S., (2018). Genetic diversity analysis in maize (Zea mays L.) using SSR markers. Journal of Pharmacognosy and Phytochemistry, 1, 1116-1120.
- Lenka, D., Tripathy, S.K., Kumar, R., Behera, M., Ranjan, R., (2015). Assessment of genetic diversity in quality protein maize (QPM) inbreds using ISSR markers. J. Environ. Biol. 36:985-992
- Morgante, M., Olivieri, A. M., (1993). PCR‐amplified microsatellites as markers in plant genetics. The plant journal, 3(1), 175-182.
- Nei, M., (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.
- Nemli, S., Kianoosh, T., Tanyolac, M.B., (2015). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based inter primer binding sites (iPBSs) markers. Turk. J.Agric. For. 39, 940–948.
- Nyaligwa, L., (2016). Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica, 60(3), 1-8.
- Omere, E. A., Nwaoguala, C. N., Emede, T. O., (2019). Microsatellite DNA Marker For Molecular Characterization of African Maize (Zea mays L.) Landraces. Journal of Microbiology, Biotechnology and Food Sciences, 976-978.
- Pachauri, A., Sarawgi, A. K., Bhandarkar, S., Ojha, G. C., (2017). Genetic variability and association study for yield contributing traits of promising core rice germplasm accessions (Oryza sativa L.). Research on Crops, 18(1), 133-138.
- Pour, A. H., Karahan, F., Ilhan, E., Ilçim, A., Haliloglu, K., (2019). Genetic structure and diversity of Adonis L. (Ranunculaceae) populations collected from Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk. J. Bot. 43, 585–596.
- Saiyad, M. M., Kumar, S., (2018). Evaluation of maize genotypes for fodder quality traits and SSR diversity. Journal of Plant Biochemistry and Biotechnology, 27(1), 78-89.
- Schliep, K. P., (2011). Phangorn: phylogenetic analysis in R. Bioinformatics, 27(4), 592-593.
- Sharma, L., Prasanna, B.M., Ramesh, B., (2010). Analysis ofphenotypic and microsatellite-based diversity of maizelandraces in India, especially from the Northeast Himalayanregion. Genetica 138: 619-631
- Sharma, T., Kumar, A., Dwivedi, S. C., Vyas, R. P., (2018). Molecular characterization and genetic diversity analysis of selected maize inbreds using SSR markers. Journal of Environmental Biology, 39(2), 228-236.
- Shukla, N., Kuntal, H., Shanker, A., Sharma, S. N., (2018). Mining and analysis of simple sequence repeats in the chloroplast genomes of genus Vigna. Biotechnology Research and Innovation, 2(1), 9-18.
- Solouki, M.; Mehdikhani, H.; Zeinali, H.; Emamjomeh, A.A., (2018). Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci. Hortic. 117, 281–287.
- Van Heerwaarden, J., Doebley, J., Briggs, W. H., Glaubitz, J. C., Goodman, M. M., Gonzalez, J. D. J. S., Ross-Ibarra, J., (2011). Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences, 108(3), 1088-1092.
- Vigouroux, Y., Glaubitz, J.C., Matsuoka, Y., Goodman, M.M., Sánchez, J., Doebley, J., (2008). Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Amer. J. Bot. 95: 1240-1253.
- Warburton, M.L., Wilkes, G., Taba, S., Charcosset, A., Mir, C., Dumas, F., Madur, D., Dreisigacker, S., Bedoya, C., Prasanna, B.M., Xie C.X., (2011). Gene flow among different teosinte taxa and intothe domesticated maize gene pool. Genet. Res. Crop. Evol.58: 1243-1261.
- Yang, F., Liao, D., Wu, X., Gao, R., Fan, Y., Raza, M. A., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., Yang, W., (2017). Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 203, 16-23.
- Yeh, F.C., Yang, R., Boyle, T.J., Ye, Z., Xiyan, J.M., (2000). PopGene32, Microsoft Windows-based freeware for population genetic analysis, Version 1.32. Molecular Biology and Biotechnology Centre,University of Alberta, Edmonton, Alberta, Canada.