Review
BibTex RIS Cite

Mercimek (Lens culinaris M.) Polen Morfolojisi ve Etkileyen Faktörler

Year 2021, Volume: 4 Issue: 2, 9 - 16, 15.12.2021

Abstract

Ülkemiz açısından önemli bir protein bitkisi olan mercimek Hindistan alt kıtasında, batı Asya'da, Afrika'nın bazı bölgelerinde ve güney Avrupa'da geniş bir alanda yetiştirilen önemli bir soğuk mevsim baklagilidir. Verim, kalite ve dayanıklılık başlıkları altında mercimek ıslah çalışmaları uluslararası ve ulusal resmi ve özel sektörlerde olmak üzere devam etmektedir. Klasik ıslah yöntemleri uygulamaları ile mercimek bitkisinde özellikle de dar genetik tabana sahip olması nedeni ile arzu edilen varyasyonlara ulaşamamaktadır. Bu nedenle biyoteknolojik uygulamalar ile bu varyasyonlar sağlanmaya çalışılmakta ve kısa sürede arzu edilen özellik bakımından saflaştırmalara gidilebilmektedir. Bu biyoteknolojik uygulamalardan olan anter, polen ve yumurtalık kültürü ıslah çalışmalarında kullanılmaktadır. Literatürler incelendiğinde bu tür generatif yapıların gelişiminde çevre (sıcaklık vb.) ve kültürel uygulamalar (çeşit, sulama, gübreleme, ekim zamanı, lokasyon vb.) önemli etkilerde bulunduğu görülmektedir. Çevre ve kültürel uygulamanın optimum olduğu koşullarda biyoteknolojik uygulamaların başarı şansını arttırmaktadır. Bu derleme, mercimek bitkisi özelinde ıslah çalışmalarında kullanılan polenin teşekkülü esnasında çevre ve kültürel uygulamalar ile olan ilişkisini ortaya koymak amacıyla yapılmıştır.

Supporting Institution

Çalışma herhangi bir kurum tarafından desteklenmemiştir.

References

  • Abraham, R., 2015. Lentil (Lens culinaris Medikus) Current status and future prospect of production in Ethiopia. Adv Plant Agric Res, 2, 0004.
  • Agrawal, S. K., 2016. Effects of heat stress on physiology and reproductive biology of chickpea and lentil. https://hdl.handle.net/20.500.11766/6324
  • Ahmad, W., Arshad, I. R., Naeem, M., Hussain, S., and Khan, F., 2017. Lentil Yield And Nodulation In Response To Foliar S And Zn Combıned With NPK And Their Interactıon With Farmyard Manure. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 33(2), 201-211.
  • Alam, A. K. M. M., Podder, R., and Sarker, A., 2011. Estimation of genetic diversity in lentil germplasm. AGRIVITA, Journal of Agricultural Science, 33(2), 103-110.
  • Atasay, A., Akgül, H., Uçgun, K., and Şan, B., 2013. Nitrogen fertilization affected the pollen production and quality in apple cultivars “Jerseymac” and “Golden Delicious”. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(5), 460-465.
  • Azimi, N., Majd, A., Nejadsattari, T., Ghanati, F., and Arbabian, S., 2018. Effects of magnetically-treated water on vegetative growth period, development of gynoecium and anther, and ultrastructure of pollen grains of lentil (Lens culinaris L.). Developmental Biology, 9(3), 23-32.
  • Baidya, A., Pal, A. K., Ali, M. A., and Nath, R., 2021. High-temperature Stress and the Fate of Pollen Germination and Yield in Lentil (Lens culinaris Medikus). Indian Journal of Agricultural Research, 55(2).
  • Barghi, S. S., Mostafaii, H., Peighami, F., Zakaria, R. A., and Nejhad, R. F., 2013. Response of in vitro pollen germination and cell membrane thermostabilty of lentil genotypes to high temperature. International Journal of Agriculture, 3(1), 13.
  • Bermejo, C., Gatti, I., and Cointry, E., 2016. In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell, Tissue and Organ Culture (PCTOC), 127(3), 585-590.
  • Bhandari, K., Sita, K., Sehgal, A., Bhardwaj, A., Gaur, P., Kumar, S. And Nayyar, H., 2020. Differential heat sensitivity of two cool‐season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. Journal of Agronomy and Crop Science, 206(6), 734-758.
  • Bhardwaj, A., Sita, K., Sehgal, A., Bhandari, K., Kumar, S., Prasad, P. V., and Nayyar, H., 2021. Heat Priming of Lentil (Lens culinaris Medik.) Seeds and Foliar Treatment with γ-Aminobutyric Acid (GABA), Confers Protection to Reproductive Function and Yield Traits under High-Temperature Stress Environments. International Journal of Molecular Sciences, 22(11), 5825.
  • Borg, M., and Twell, D., 2011. Pollen: structure and development. eLS. https://doi.org/10.1002/9780470015902.a0002039.pub2.
  • Cokkizgin, A., and Shtaya, M. J., 2013. Lentil: Origin, cultivation techniques, utilization and advances in transformation. Agricultural Science, 1(1), 55-62.
  • Deswal, K., 2018. Progress and opportunities in double haploid production in lentil (Lens culinaris Medik.), soybean (Glycine max L. Merr.) and chickpea (Cicer arietinum L.). J Pharmacogn Phytochem, 7(3), 3105-3109.
  • Edlund, A. F., Swanson, R., and Preuss, D., 2004. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, 16(suppl_1), S84-S97.
  • Erskine, W., Muehlbauer, F. J., and Short, R. W., 1990. Stages of development in lentil. Experimental Agriculture, 26(3), 297-302.
  • Erskine, W., Muehlbauer, F. J., Sarker, A., and Sharma, B., 2009. The lentil: botany, production and uses. Pg:41-42. ISBN-13: 978 1 84593 487 3.
  • FAO, 2019. http://www.fao.org/faostat/en/#data/QCL. Erişim Tarihi: 14.08.2021
  • Fratini, R., García, P., & Ruiz, M. L., 2006. Pollen and pistil morphology, in vitro pollen grain germination and crossing success of Lens cultivars and species. Plant breeding, 125(5), 501-505.
  • Frenguelli, G., 2004. Pollen structure and morphology. Advances in Dermatology and Allergology/Postępy Dermatologii Alergologii, 20(4), 200-204.
  • Gatti, I., Guindón, F., Bermejo, C., Espósito, A., and Cointry, E., 2016. In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell, Tissue and Organ Culture (PCTOC), 127(3), 543-559.
  • Grant-Downton, R., 2009. Pollen terminology. An illustrated handbook. Annuals of Botany, Volume 105, Issue 2, February 2010, Pages viii–ix. https://doi.org/10.1093/aob/mcp289.
  • Kahriman, A., Temel, H. Y., Aydoğan, A., and Tanyolac, M. B., 2015. Major quantitative trait loci for flowering time in lentil. Turkish Journal of Agriculture and Forestry, 39(4), 588-595.
  • Kumar, J., Srivastava, E., Singh, M., Mahto, D., Pratap, A., and Kumar, S., 2014. Lentil. In Alien Gene Transfer in Crop Plants, Volume 2 (pp. 191-205). Springer, New York, NY.
  • Kumar, J., Gupta, S., Biradar, R. S., Gupta, P., Dubey, S., and Singh, N. P., 2018. Association of functional markers with flowering time in lentil. Journal of applied genetics, 59(1), 9-21.
  • Kuprianova, L. A., 1967. Apertures of pollen grains and their evolution in angiosperms. Review of Palaeobotany and Palynology, 3(1-4), 73-80.
  • Ladizinsky, G., 1979. The origin of lentil and its wild genepool. Euphytica, 28(1), 179-187.
  • Lau, T. C., and Stephenson, A. G., 1994. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sexual Plant Reproduction, 7(4), 215-220.
  • Muehlbauer, F. J., Slinkard, A. E., and Wilson, V. E., 1980. Lentil. Hybridization of Crop Plants, 417-426.
  • Muehlbauer, F. J., and McPhee, K. E., 2005. Lentil (Lens culinaris Medik.). Genetic resources and chromosome engineering and crop improvement. Grain legumes, 1, 219-230.
  • Oliveira, H. R., Liber, M., Duarte, I., and Maia, A. T., 2021. The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by Genotyping-by-Sequencing of wild and landrace accessions. Frontiers in Plant Science, 12, 355.
  • Pandey, N., Pathak, G. C., and Sharma, C. P., 2006. Zinc is critically required for pollen function and fertilisation in lentil. Journal of Trace Elements in Medicine and Biology, 20(2), 89-96.
  • Poulton, J. L., Bryla, D., Koide, R. T., and Stephenson, A. G., 2002. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytologist, 154(1), 255-264.
  • Powell, W., 1990. Environmental and genetical aspects of pollen embryogenesis. In Haploids in Crop Improvement, Edited by: YPS, B. 45–65. Berlin: Springer-Verlag. vol 12.
  • Roy, S., Islam, M. A., Sarker, A., Malek, M. A., Rafii, M. Y., and Ismail, M. R., 2013. Determination of genetic diversity in lentil germplasm based on quantitative traits. Australian Journal of Crop Science, 7(1), 14-21.
  • Sangwan, R. S., and Sangwan-Norreel, B. S., 1990. Anther and pollen culture. In Developments in crop science (Vol. 19, pp. 220-241). Elsevier.
  • Sehgal, A., Sita, K., Rehman, A., Farooq, M., Kumar, S., Yadav, R., and Siddique, K. H., 2021. Lentil. In Crop Physiology Case Histories for Major Crops (pp. 408-428). Academic Press.
  • Sharma, S. K., Dawson, I. K., and Waugh, R., 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theoretical and Applied Genetics, 91(4), 647-654.
  • Sarker, R. H., Das, S. K., and Hoque, M. I., 2012. In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cellular & Developmental Biology-Plant, 48(5), 446-452.
  • Srivastava, A., and Yadav, A. K., 2001. Gamma ray induced male sterility mutant in lentil. International Atomic Energy Agency (IAEA). Report Number: INIS-XA—427. Seibersdorf (Austria); 56 p; Jul 2001; p. 22-23; 5 refs.
  • Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H., and Nayyar, H., 2017. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers in plant science, 8, 744.
  • Toğay, Y., Toğay, N., & Gülser, F., 2018. Effects of Zinc Applications on Nutrient Contents of Up Ground Parts in Lentil (Lens Culinaris Medic.) Varieties. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(5), 268 - 275.
  • van Rheenen, H. A., Bond, D. A., Erskine, W., and Sharma, B., 1988. Future breeding strategies for pea, lentil, faba bean and chickpea. In World crops: Cool season food legumes (pp. 1013-1029). Springer, Dordrecht.
  • Zakeri, H., and Bueckert, R., 2015. Post‐flowering biomass and nitrogen accumulation of lentil substantially contributes to pod production. Crop science, 55(1), 411-419.

Lentil (Lens culinaris M.) Pollen Morphology and Affecting Factors

Year 2021, Volume: 4 Issue: 2, 9 - 16, 15.12.2021

Abstract

Lentil, which is an important protein plant for our country, is an important cold season legume grown in a wide area in the Indian subcontinent, western Asia, some parts of Africa and southern Europe. Lentil breeding activities under the titles of yield, quality and resistance continue in international and national public and private sectors. With the classical breeding methods applications, the desired variations cannot be achieved in the lentil plant, especially since it has a narrow genetic base. For this reason, these variations are tried to be provided with biotechnological applications and purification can be achieved in a short time in terms of desired properties. Anther, pollen and ovary cultures, which are among these biotechnological applications, are used in breeding studies. When the literature is examined, it is seen that the environment (temperature, etc.) and cultural practices (variety, irrigation, fertilization, sowing time, location, etc.) have important effects on the development of such generative structures. It increases the chances of success of biotechnological applications in conditions where environmental and cultural application is optimum. This review was made in order to reveal the relationship between the environment and cultural practices during the formation of the pollen used in breeding studies, specifically for the lentil plant.

References

  • Abraham, R., 2015. Lentil (Lens culinaris Medikus) Current status and future prospect of production in Ethiopia. Adv Plant Agric Res, 2, 0004.
  • Agrawal, S. K., 2016. Effects of heat stress on physiology and reproductive biology of chickpea and lentil. https://hdl.handle.net/20.500.11766/6324
  • Ahmad, W., Arshad, I. R., Naeem, M., Hussain, S., and Khan, F., 2017. Lentil Yield And Nodulation In Response To Foliar S And Zn Combıned With NPK And Their Interactıon With Farmyard Manure. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 33(2), 201-211.
  • Alam, A. K. M. M., Podder, R., and Sarker, A., 2011. Estimation of genetic diversity in lentil germplasm. AGRIVITA, Journal of Agricultural Science, 33(2), 103-110.
  • Atasay, A., Akgül, H., Uçgun, K., and Şan, B., 2013. Nitrogen fertilization affected the pollen production and quality in apple cultivars “Jerseymac” and “Golden Delicious”. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(5), 460-465.
  • Azimi, N., Majd, A., Nejadsattari, T., Ghanati, F., and Arbabian, S., 2018. Effects of magnetically-treated water on vegetative growth period, development of gynoecium and anther, and ultrastructure of pollen grains of lentil (Lens culinaris L.). Developmental Biology, 9(3), 23-32.
  • Baidya, A., Pal, A. K., Ali, M. A., and Nath, R., 2021. High-temperature Stress and the Fate of Pollen Germination and Yield in Lentil (Lens culinaris Medikus). Indian Journal of Agricultural Research, 55(2).
  • Barghi, S. S., Mostafaii, H., Peighami, F., Zakaria, R. A., and Nejhad, R. F., 2013. Response of in vitro pollen germination and cell membrane thermostabilty of lentil genotypes to high temperature. International Journal of Agriculture, 3(1), 13.
  • Bermejo, C., Gatti, I., and Cointry, E., 2016. In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell, Tissue and Organ Culture (PCTOC), 127(3), 585-590.
  • Bhandari, K., Sita, K., Sehgal, A., Bhardwaj, A., Gaur, P., Kumar, S. And Nayyar, H., 2020. Differential heat sensitivity of two cool‐season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage. Journal of Agronomy and Crop Science, 206(6), 734-758.
  • Bhardwaj, A., Sita, K., Sehgal, A., Bhandari, K., Kumar, S., Prasad, P. V., and Nayyar, H., 2021. Heat Priming of Lentil (Lens culinaris Medik.) Seeds and Foliar Treatment with γ-Aminobutyric Acid (GABA), Confers Protection to Reproductive Function and Yield Traits under High-Temperature Stress Environments. International Journal of Molecular Sciences, 22(11), 5825.
  • Borg, M., and Twell, D., 2011. Pollen: structure and development. eLS. https://doi.org/10.1002/9780470015902.a0002039.pub2.
  • Cokkizgin, A., and Shtaya, M. J., 2013. Lentil: Origin, cultivation techniques, utilization and advances in transformation. Agricultural Science, 1(1), 55-62.
  • Deswal, K., 2018. Progress and opportunities in double haploid production in lentil (Lens culinaris Medik.), soybean (Glycine max L. Merr.) and chickpea (Cicer arietinum L.). J Pharmacogn Phytochem, 7(3), 3105-3109.
  • Edlund, A. F., Swanson, R., and Preuss, D., 2004. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, 16(suppl_1), S84-S97.
  • Erskine, W., Muehlbauer, F. J., and Short, R. W., 1990. Stages of development in lentil. Experimental Agriculture, 26(3), 297-302.
  • Erskine, W., Muehlbauer, F. J., Sarker, A., and Sharma, B., 2009. The lentil: botany, production and uses. Pg:41-42. ISBN-13: 978 1 84593 487 3.
  • FAO, 2019. http://www.fao.org/faostat/en/#data/QCL. Erişim Tarihi: 14.08.2021
  • Fratini, R., García, P., & Ruiz, M. L., 2006. Pollen and pistil morphology, in vitro pollen grain germination and crossing success of Lens cultivars and species. Plant breeding, 125(5), 501-505.
  • Frenguelli, G., 2004. Pollen structure and morphology. Advances in Dermatology and Allergology/Postępy Dermatologii Alergologii, 20(4), 200-204.
  • Gatti, I., Guindón, F., Bermejo, C., Espósito, A., and Cointry, E., 2016. In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell, Tissue and Organ Culture (PCTOC), 127(3), 543-559.
  • Grant-Downton, R., 2009. Pollen terminology. An illustrated handbook. Annuals of Botany, Volume 105, Issue 2, February 2010, Pages viii–ix. https://doi.org/10.1093/aob/mcp289.
  • Kahriman, A., Temel, H. Y., Aydoğan, A., and Tanyolac, M. B., 2015. Major quantitative trait loci for flowering time in lentil. Turkish Journal of Agriculture and Forestry, 39(4), 588-595.
  • Kumar, J., Srivastava, E., Singh, M., Mahto, D., Pratap, A., and Kumar, S., 2014. Lentil. In Alien Gene Transfer in Crop Plants, Volume 2 (pp. 191-205). Springer, New York, NY.
  • Kumar, J., Gupta, S., Biradar, R. S., Gupta, P., Dubey, S., and Singh, N. P., 2018. Association of functional markers with flowering time in lentil. Journal of applied genetics, 59(1), 9-21.
  • Kuprianova, L. A., 1967. Apertures of pollen grains and their evolution in angiosperms. Review of Palaeobotany and Palynology, 3(1-4), 73-80.
  • Ladizinsky, G., 1979. The origin of lentil and its wild genepool. Euphytica, 28(1), 179-187.
  • Lau, T. C., and Stephenson, A. G., 1994. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sexual Plant Reproduction, 7(4), 215-220.
  • Muehlbauer, F. J., Slinkard, A. E., and Wilson, V. E., 1980. Lentil. Hybridization of Crop Plants, 417-426.
  • Muehlbauer, F. J., and McPhee, K. E., 2005. Lentil (Lens culinaris Medik.). Genetic resources and chromosome engineering and crop improvement. Grain legumes, 1, 219-230.
  • Oliveira, H. R., Liber, M., Duarte, I., and Maia, A. T., 2021. The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by Genotyping-by-Sequencing of wild and landrace accessions. Frontiers in Plant Science, 12, 355.
  • Pandey, N., Pathak, G. C., and Sharma, C. P., 2006. Zinc is critically required for pollen function and fertilisation in lentil. Journal of Trace Elements in Medicine and Biology, 20(2), 89-96.
  • Poulton, J. L., Bryla, D., Koide, R. T., and Stephenson, A. G., 2002. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytologist, 154(1), 255-264.
  • Powell, W., 1990. Environmental and genetical aspects of pollen embryogenesis. In Haploids in Crop Improvement, Edited by: YPS, B. 45–65. Berlin: Springer-Verlag. vol 12.
  • Roy, S., Islam, M. A., Sarker, A., Malek, M. A., Rafii, M. Y., and Ismail, M. R., 2013. Determination of genetic diversity in lentil germplasm based on quantitative traits. Australian Journal of Crop Science, 7(1), 14-21.
  • Sangwan, R. S., and Sangwan-Norreel, B. S., 1990. Anther and pollen culture. In Developments in crop science (Vol. 19, pp. 220-241). Elsevier.
  • Sehgal, A., Sita, K., Rehman, A., Farooq, M., Kumar, S., Yadav, R., and Siddique, K. H., 2021. Lentil. In Crop Physiology Case Histories for Major Crops (pp. 408-428). Academic Press.
  • Sharma, S. K., Dawson, I. K., and Waugh, R., 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theoretical and Applied Genetics, 91(4), 647-654.
  • Sarker, R. H., Das, S. K., and Hoque, M. I., 2012. In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cellular & Developmental Biology-Plant, 48(5), 446-452.
  • Srivastava, A., and Yadav, A. K., 2001. Gamma ray induced male sterility mutant in lentil. International Atomic Energy Agency (IAEA). Report Number: INIS-XA—427. Seibersdorf (Austria); 56 p; Jul 2001; p. 22-23; 5 refs.
  • Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H., and Nayyar, H., 2017. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers in plant science, 8, 744.
  • Toğay, Y., Toğay, N., & Gülser, F., 2018. Effects of Zinc Applications on Nutrient Contents of Up Ground Parts in Lentil (Lens Culinaris Medic.) Varieties. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(5), 268 - 275.
  • van Rheenen, H. A., Bond, D. A., Erskine, W., and Sharma, B., 1988. Future breeding strategies for pea, lentil, faba bean and chickpea. In World crops: Cool season food legumes (pp. 1013-1029). Springer, Dordrecht.
  • Zakeri, H., and Bueckert, R., 2015. Post‐flowering biomass and nitrogen accumulation of lentil substantially contributes to pod production. Crop science, 55(1), 411-419.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Review Article
Authors

Nurdoğan Topal 0000-0002-3466-1005

Ahmet Kasım Bal 0000-0003-0811-1357

Early Pub Date January 1, 2022
Publication Date December 15, 2021
Acceptance Date October 16, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Topal, N., & Bal, A. K. (2021). Mercimek (Lens culinaris M.) Polen Morfolojisi ve Etkileyen Faktörler. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 4(2), 9-16.