Research Article
BibTex RIS Cite

Effects of Strigalactone Applications on Increasing Tolerance to Abiotic Stress Conditions in Plants

Year 2024, Volume: 7 Issue: 2, 71 - 85
https://doi.org/10.55257/ethabd.1552107

Abstract

Abiotic stress is the adverse effect of any abiotic factor on plants in a given environment and affects the growth and development of plants. These stress factors such as drought, salinity and extreme temperatures are usually associated with each other or coexist. Abiotic stress is largely responsible for the decrease in agricultural production, while other stress factors are less effective. Abiotic stress factors include drought, salinity, high and low temperature, flooding, radiation, heavy metals, oxidative stress, wind and nutrient deficiency, and these stress sources negatively affect plant development, quality and productivity. Various strategies are used to maximize plant growth and productivity under environmental stresses such as abiotic stresses. An alternative and technically simpler approach is to induce tolerance through exogenous application of specific plant growth regulator compounds. In recent years, strigalactone (SL) have attracted great attention due to their essential roles in regulating numerous physiological and molecular pathways during the plant response to abiotic stresses. In this study, the effects of SLs applications on plants grown under some abiotic stress conditions such as salinity, drought, high temperature and heavy metal stress are discussed.

References

  • Abbas, S., Javed, M. T., Ali, Q., Azeem, M., and Ali, S., 2021. Nutrient deficiency stress and relation with plant growth and development. In Engineering tolerance in crop plants against abiotic stress (pp. 239-262). CRC Press.
  • Ahemad, M., 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365-1377.
  • Ahsan, M., Zulfiqar, H., Farooq, M.A., 2023. Strigolactone (GR24) application positively regulates photosynthetic attributes, stress-related metabolites and antioxidant enzymatic activities of ornamental sunflower (Helianthus annuus cv. Vincent’s Choice) under salinity stress. Agriculture. 2023;13(1):50. doi:10.3390/agriculture13010050
  • Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., Al-Babili, S., 2012. The path from b-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351. https:// doi. org/ 10. 1126/ scien ce. 12180 94
  • Ali, A., Shah, T., Haider, G., Awan, M. I., Gohar, M., Munsif, F., and Ahmad, I., 2023. Strigolactone-mediated oxidative stress alleviation in Brassica rapa through upregulating antioxidant system under water deficit conditions. Journal of Plant Growth Regulation, 42(8), 4675-4687.
  • Alvi, A. F., Sehar, Z., Fatma, M., Masood, A., & Khan, N. A. (2022). Strigolactone: an emerging growth regulator for developing resilience in plants. Plants, 11(19), 2604.
  • Argosubekti, N. (2020). A review of heat stress signaling in plants. In IOP Conference Series: Earth and Environmental Science (Vol. 484, No. 1, p. 012041). IOP Publishing.
  • Arite, T., Kameoka, H., Kyozuka, J.,. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 2012, 31, 165–172.
  • Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253.
  • Baltacıer, G., Donat, S., and Acar, O., 2023. The effects of exogenous salicylic acid and strigolactone applications on seedling growth and antioxidant activity in tomato seedlings under short-term drought stress. Journal of the Institute of Science and Technology, 13(1), 89-101.
  • Banerjee, A., Wani, S.H., Roychoudhury, A., 2017. Epigenetic control of plant cold responses. Front Plant Sci 8:1643. https:// doi. org/ 10.3389/ fpls. 2017. 0164
  • Bashir, S., Hussain, Q., Shaaban, M., and Hu, H., 2018. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere, 211, 632-639.
  • Bhoi, A., Yadu, B., Chandra, J., Keshavkant, S., 2021. “Contribution of strigolactone in plant physiology, chormonal interaction and abiotic stresses”, Planta, 254(2), 1-21.
  • Bielach, A., Hrtyan, M., and Tognetti, V. B., 2017. Plants under stress: involvement of auxin and cytokinin. International journal of molecular sciences, 18(7), 1427.
  • Brewer, P. B., Koltai, H., and Beveridge, C. A., 2013. Diverse roles of strigolactones in plant development. Mol Plant 6:18–28. https:// doi. org/ 10. 1093/ mp/ sss130.
  • Chen, X., Shi, X., Ai, Q., Han, J., Wang, H., and Fu, Q., 2022. Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Horticultural Plant Journal, 8(5), 637-649.
  • Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J., and Yu, J., 2021. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research, 8.
  • Costa, S. F., Martins, D., Agacka-Mołdoch, M., Czubacka, A., and de Sousa Araújo, S., 2018. Strategies to alleviate salinity stress in plants. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms, 307-337.
  • Danish, S., Hareem, M., Dawar, K., Naz, T., Iqbal, M. M., Ansari, M. J., and Datta, R. (2024). The role of strigolactone in alleviating salinity stress in chili pepper. BMC Plant Biology, 24(1), 209.
  • Decker, E. L., Alder, A., and Hunn, S., 2017. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol 216:455–468. https:// doi.org/10.1111/nph.14506.
  • DalCorso, G., Manara, A., Piasentin, S., and Furini, A., 2014. Nutrient metal elements in plants. Metallomics, 6(10), 1770-1788.
  • Ekinci, M., Yildirim, E., Dursun, A., Turan, M., 2012. “Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Hortscıence, 47(5), 631–636.
  • Faisal, M., Alatar, A. A., Doležal, K., and Shekhawat, M. S., 2024. Strigolactone analogue GR24 mediated somatic embryogenesis from leaf tissues of Santalum album L. In Vitro Cellular & Developmental Biology-Plant, 60(1), 39-49
  • Faizan, M., Cheng, S. H., Tonny, S. H., and Robab, M. I., 2022. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. Plant Physiology and Biochemistry.
  • Farooq, M., Hussain, M., Wahid, A., and Siddique, K. H. M., 2012. Drought stress in plants: an overview. Plant responses to drought stress: From morphological to molecular features, 1-33.
  • Foo, E., and Davies, N.W., 2011. Strigolactones promote nodulation in pea. Planta 2011, 234, 1073–1081.
  • Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G., 2004. Rapid and tissue‐specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of experimental botany, 55(399), 1115-1123.
  • Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F., 2008. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L seedlings. Plant Soil Environ. 54:374–381.
  • Garcia, K., and Zimmermann, S. D., 2014. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 5, 337.
  • Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., and Yoshioka, T., 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany, 55(394), 111-118.
  • Guo, T., Gull, S., Ali, M. M., Yousef, A. F., Ercisli, S., Kalaji, H. M., and Ghareeb, R. Y., 2022. Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Reports, 12(1), 11324.
  • Guo, S., Wei, X., Ma, B., Ma, Y., Yu, Z., and Li, P., 2023. Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense. Stress Biology, 3(1), 54.
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., and Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684.
  • Hu, Z., Yan, H., Yang, J., Yamaguchi, S., Maekawa, M., Takamure, I., Tsutsumi, N., Kyozuka, J., and Nakazono, M., 2010. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol. 51, 1136–1142.
  • Jagadish, S. K., Way, D. A., and Sharkey, T. D., 2021. Plant heat stress: Concepts directing future research. Plant, cell & environment, 44(7), 1992-2005.
  • Isayenkov, S.V., and Maathuis, F.J., 2019. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 10, 80.
  • Kapoor, R. T., Ahmad, A., Shakoor, A., Paray, B. A., and Ahmad, P., 2023. Nitric oxide and strigolactone alleviate mercury-induced oxidative stress in Lens culinaris L. by modulating glyoxalase and antioxidant defense system. Plants, 12(9), 1894.
  • Kapoor, R. T., Alam, P., Chen, Y., and Ahmad, P., 2024. Strigolactones in plants: from development to abiotic stress management. Journal of Plant Growth Regulation, 43(3), 903-919.
  • Karthika, K. S., Rashmi, I., and Parvathi, M. S., 2018. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In: Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 1–49.
  • Khan, W., Khan, A., Ullah, A., Haq, S. I. U., Hassan, N., Iqbal, B., and Elansary, H. O., 2023. Insights concerning advancing the agroecological sustainability of salinity tolerance through proteomics profiling of hexaploid wheat (Triticum aestivum L.). South African Journal of Botany, 158, 142-148.
  • Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., and Novák, J., 2023. Abiotic stress in crop production. International Journal of Molecular Sciences, 24(7), 6603.
  • Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Delmas, N. S., Combier, J. P., Becard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., and Koltai, H., 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis thaliana. Planta 233:209–216. https:// doi. org/ 10. 1007/ s00425- 010- 1310-y.
  • Kleman, J., and Matusova, R., 2023. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia, 78(2), 307-318.
  • Kumar, S., Kumar, S., and Mohapatra, T., 2021. Interaction between macro‐and micro-nutrients in plants. Frontiers in Plant Science, 12, 665583.
  • Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., Shealtiel, H., Bhattacharya, C., Eliahu, E., and Resnick, N., 2010. Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J. Plant Growth Regul. 2010, 29, 129–136.
  • Kountche, B. A., Jamil, M., and Yonli, D., 2019. Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub-Saharan Africa. PLANTS, PEOPLE. PLANET 1:107–118. https://doi.org/10.1002/ppp3.32.
  • Lechat, M. M., Brun, G., Montiel, G., Véronési, C., Simier, P., Thoiron, S., and Delavault, P. 2015. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. Journal of experimental botany, 66(11), 3129-3140.
  • Li, Y., Li, S., Feng, Q., Zhang, J., Han, X., Zhang, L., and Zhou, J., 2022. Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. Seedlings under drought stress. BMC Plant Biology, 22(1), 578.
  • Li, C., Lu, X., Liu, Y., Xu, J., and Yu, W., 2023. Strigolactone alleviates the adverse effects of salt stress on seed germination in cucumber by enhancing antioxidant capacity. Antioxidants, 12(5), 1043.
  • Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., and Zhao, Y. 2020. “Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings”, Scientific Reports, 10(1), 1-8.
  • Lovejoy, C., and Smemo, K. A., 2021. Strigolactone significantly increases lead uptake by dwarf sunflower (Helianthus annuus). Bioremediation Journal, 25(3), 191-196.
  • Lu, X., Liu, X., Xu, J., Liu, Y., Chi, Y., Yu, W., and Li, C., 2023. Strigolactone-mediated trehalose enhances salt resistance in tomato seedlings. Horticulturae, 9(7), 770.
  • Luqman, M., Shahbaz, M., Maqsood, M. F., Farhat, F., Zulfiqar, U., Siddiqui, M. H., and Haider, F. U., 2023. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress. Plant Signaling & Behavior, 18(1), 2262795. Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., and Zhang, C., 2017. Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front. Plant Sci. 8, 1671. https:// doi.org/10.3389/fpls.2017.01671.
  • Maggio, A., Raimondi, G., Martino, A., and De Pascale, S., 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 59: 276–282.
  • Mahajan, S., and Tuteja, N., 2005. Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158.
  • Marzec, M., Muszynska, A., and Gruszka, D., 2013. The role of strigolactones in nutrient-stress responses in plants. International Journal of Molecular Sciences, 14(5), 9286-9304.
  • Marzec, M., and Melzer, M., 2018. Regulation of root development and architecture by strigolactones under optimal and nutrient deficiency conditions. International journal of molecular sciences, 19(7), 1887.
  • Mehrabi, S. S., Sabokdast, M., Bihamta, M. R., Soorni, J., and Mirmazloum, I., 2024. Strigolactone-mediated amelioration of salinity stress in bread wheat: insights from phytochemical and ion channels related genes expression analyses. Plant Stress, 11, 100324.
  • Mickelbart, M. V., Hasegawa, P. M., Bailey-Serres, J., 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics. 16: 237–251.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., and Fang, Y., 2018. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110. https:// doi. org/ 10. 1016/j. plaphy. 2018. 11. 037.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., and Fang, Y., 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., and Tran, L. S. P., 2018. “Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research”, Plant, cell & environment, 41(10), 2227-2243.
  • Mostofa, M. G., Ha, C. V., and Rahman, M. M., 2021. Strigolactones modulate cellular antioxidant defense mechanisms to mitigate arsenate toxicity in rice shoots. Antioxidants 10:1815. https://doi. org/10.3390/antiox10111815.
  • Munns, R., and Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681. Naser, V., and Shani, E., 2016. Auxin response under osmotic stress. Plant molecular biology, 91(6), 661-672. Nawaz, G., and Mussarat, S., 2023. Strigolactone in Abiotic Stress Tolerance of Crop Plants. In Strigolactones, Alkamides and Karrikins in Plants (pp. 75-86). CRC Press.
  • Niu, K., Zhang, R., and Zhu, R., 2021. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. Ecotoxicol Environ Saf 212:112002. https://doi.org/10.1016/j. ecoenv.2021.112002.
  • Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., Pospíšil, T., Strnad, M., and Van Staden, J., 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry, 155, 965-979.
  • Osakabe, Y., Yamaguchi‐Shinozaki, K., Shinozaki, K., and Tran, L. S. P., 2014. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202(1), 35-49. Pandey, A., Sharma, M., and Pandey, G. K., 2016. Emerging roles of strigolactones in plant responses to stress and development. Frontiers in Plant Science, 7, 434.
  • Parida, A. K., and Das, A. B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safe. 60:324–349.
  • Prasad, M. N. V., and Strazalka, K., 2002. Physiology and biochemistry of metal toxicity and tolerance in plants. Dordrecht, Kluwer Academic Publishers, 432 p. ISBN 1-40-200468-0.
  • Raja, V., Qadir, S. U., Kumar, N., Alsahli, A. A., Rinklebe, J., and Ahmad, P., 2023. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiology and Biochemistry, 201, 107872.
  • Raja, V., Singh, K., Qadir, S. U., Singh, J., and Kim, K. H., 2024. Alleviation of cadmium-induced oxidative damage through application of zinc oxide nanoparticles and strigolactones in Solanum lycopersicum L. Environmental Science: Nano.
  • Ren, C. G., Kong, C. C., and Xie, Z. H., 2018. Role of abscisic acid in strigolactoneinduced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology 18: 74.
  • Ruiz-Lozano, J. M., Aroca, R., Zamarreno, A. M., Molina, S., Andreo-Jimenez, B., Porcel, R., Garcia-Mina, J. M., Ruyter-Spira, C., and Lopez Raez, J. A., 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452.https:// doi. org/ 10. 1111/ pce. 12631.
  • Qiu, C. W., Zhang, C., and Wang, N. H., 2021. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut 273:116486. https://doi.org/10.1016/j.envpol.2021.116486.
  • Qu, A. L., Ding, Y. F., Jiang, Q., and Zhu, C., 2013. Molecular mechanisms of the plant heat stress response. Biochemical and biophysical research communications, 432(2), 203-207.
  • Saeed, W., Naseem, S., and Ali, Z., 2017. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Frontiers in Plant Science, 8, 1487.
  • Sattar, A., Ul-Allah, S., and Ijaz, M., 2021. Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun 50:263–272. https://doi.org/10.1007/s42976-021-00171-z.
  • Sattar, A., Ul-Allah, S., Ijaz, M., Sher, A., Butt, M., Abbas, T., and Alharbi, S. A., 2022. “Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms”, Cereal Research Communications, 50(2), 263-272.
  • Sanz, L., Albertos, P., Mateos, I., Sanchez-Vicente, I., Lechon, T., Fernandez-Marcos, M., and Lorenzo, O., 2015. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 66, 2857–2868.
  • Sedaghat, M., Sarvestani, Z. T., Emam, Y., Bidgoli, A. M., and Sorooshzadeh, A., 2020. Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russian Journal of Plant Physiology, 67, 733-739.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C. J., Celi, L., and Schubert, A., 2020. Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9:612. https:// doi. org/ 10. 3390/ plant s9050 612.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., and Battaglia, M. L., 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Shah, T., Asad, M., Khan, Z., Amjad, K., Alsahli, A. A., and D'amato, R., 2023. Strigolactone decreases cadmium concentrations by regulating cadmium localization and glyoxalase defense system: Effects on nodules organic acids and soybean yield. Chemosphere, 335, 139028.
  • Shahzad, K., Danish, S., Mubeen, S., Dawar, K., Fahad, S., Hasnain, Z., and Almoallim, H. S., 2024. Minimization of heavy metal toxicity in radish (Raphanus sativus) by strigolactone and biochar. Scientific Reports, 14(1), 13616.
  • Sharma, P., Jha, A. B., and Dubey, R. S., 2024. Strigolactones: Coordination with other Phytohormones and Enhancement of Abiotic Stress Responses. Environmental and Experimental Botany, 105782.
  • Shindo, M., Shimomura, K., Yamaguchi, S., and Umehara, M., 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct 2:e00050. https://doi.org/10.1002/pld3.50.
  • Shu, H., Xu, K., Li, X., Liu, J., Altaf, M. A., Fu, H., and Wang, Z., 2024. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. Plant Cell Reports, 43(4), 106.
  • Song, M., Zhou, S., Hu, N., Li, J., Huang, Y., Zhang, J., and He, D., 2023. Exogenous strigolactones alleviate drought stress in wheat (Triticum aestivum L.) by promoting cell wall biogenesis to optimize root architecture. Plant Physiology and Biochemistry, 204, 108121.
  • Soto, M. J., Fernandez-Aparicio, M., Castellanos-Morales, V., Garcia-Garrido, J. A., Delgado, M. J., and Vierheilig, H., 2010. First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol. Biochem. 42, 383–385.
  • Stavi, I., Thevs, N., and Priori, S., 2021. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 330, 712831.
  • Tai, Z., Yin, X., Fang, Z., Shi, G., Lou, L., and Cai, Q., 2017. Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. International Journal of Environmental Research and Public Health, 14(8), 852.
  • Talaat, N. B., and Shawky, B. T., 2016. Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. Journal of Plant Growth Regulation, 35(2), 518-533.
  • Tariq, A., Ullah, I., Sardans, J., Graciano, C., Mussarat, S., Ullah, A., ... & Peñuelas, J. (2023). Strigolactones can be a potential tool to fight environmental stresses in arid lands. Environmental Research, 229, 115966.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., and Tsuchiya, Y., 2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117. https:// doi. org/ 10. 1093/ pcp/ pcr176.
  • Trabelsi, I., Yoneyama, K., and Abbes, Z., 2017. Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South Afr J Bot 108:15–22. https://doi.org/10.1016/j.sajb.2016.09.009.
  • Trasoletti, M., Visentin, I., Campo, E., Schubert, A., and Cardinale, F., 2022. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant, Cell & Environment, 45(12), 3611-3630.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., Yamaguchi, S., and McCourt, P., 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749. https:// doi. org/ 10. 1038/ nchem bio. 435.
  • Umehara, M., 2011. Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437. https://doi.org/10.5511/plantbiotechnology.11.1109a.
  • Xie, Y., Liu, Y., Ma, M., Zhou, Q., Zhao, Y., and Zhao, B., 2020. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat. Commun. 11:1955. doi: 10.1038/s41467-020-15893-7.
  • van Zeijl, A., Liu, W., Xiao, T. T., Kohlen, W., Yang, W. C., Bisseling, T., and Geurts, R., 2015. “The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis”, BMC Plant Biology, 15(1), 1-15.
  • Visentin, I., Pagliarani, C., Deva, E., Caracci, A., Turečková, V., Novák, O., and Cardinale, F., 2020. A novel strigolactone‐miR156 module controls stomatal behaviour during drought recovery. Plant, cell & environment, 43(7), 1613-1624.
  • Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., and Patel, M., 2020. Effect of Abiotic Stress on Crops. IntechOpen. doi: 10.5772/intechopen.88434.
  • Yang, Y., Zheng, Q., Zhou, K., Xiao, Y., Huang, C., Hu, R., and Wang, J., 2024. Effects of exogenous strigolactone on the cadmium accumulation in Galinsoga parviflora Cav. Chemistry and Ecology, 40(3), 292-304.
  • Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., and Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 61: 1673-1689. Yoneyama, K., 2019. How do strigolactones ameliorate nutrient deficiencies in plants?. Cold Spring Harbor Perspectives in Biology, 11(8), a034686.
  • Yoneyama, K., Kisugi, T., Xie, X., Arakawa, R., Ezawa, T., Nomura, T., and Yoneyama, K., 2015. Shoot derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta 241:687–698. https:// doi. org/ 10. 1007/s00425- 014- 2208-x.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M., Castroverde, C. D. M., and Aftab, T., 2021. “Mechanistic insights into strigolactone biosynthesis, signaling, and regulation during plant growth and development”. Journal of Plant Growth Regulation. 40(5), 1836-1852.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M., Khan, R., and Aftab, T., 2022. Exogenous Strigolactone (GR24) Positively Regulates Growth, Photosynthesis, and Improves Glandular Trichome Attributes for Enhanced Artemisinin Production in Artemisia annua”. Journal of Plant Growth Regulation. 1-10.
  • Wani, K. I., Naeem, M., Khan, M. M. A. and Afab, T., 2023. Insights into strigolactone (GR24) mediated regulation of cadmium-induced changes and ROS metabolism in Artemisia annua. J. Hazard Mater. 448, 130899.
  • Waters, M. T., Scaffidi, A., Flematti, G. R., and Smith, S. M., 2012. Karrikins force a rethink of strigolactone mode of action. Plant signaling & behavior, 7(8), 969-972.
  • Wu, F., Gao, Y., Yang, W., Sui, N., and Zhu, J., 2022. Biological functions of strigolactones and their crosstalk with other phytohormones. Frontiers in Plant Science, 13, 821563.
  • Zhang, H., Zhao, Y., and Zhu, J.K., Thriving under stress: How plants balance growth and the stress response. Dev. Cell 2020, 55, 529–543.
  • Zhang, H., Zhu, J., Gong, Z., and Zhu, J. K., 2022. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119.
  • Zhang, Y., Xu, J., Li, R., Ge, Y., Li, Y., and Li, R., 2023. Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences, 24(13), 10915.
  • Zhao, J., Qin, G., Liu, X., Li, J., Liu, C., Zhou, J., and Liu, J., 2022. Genome-wide identification and expression analysis of HAK/KUP/KT potassium transporter provides insights into genes involved in responding to potassium deficiency and salt stress in pepper (Capsicum annuum L.). 3 Biotech, 12(3), 1-14.
  • Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., and Guo, Y., 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51(1), 16-34.
  • Zhou, X., Tan, Z., and Zhou, Y., 2022. Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biol 22:30. https://doi.org/10.1186/ s12870-021-03414-7.
  • Zulfiqar, H., Shahbaz, M., Ahsan, M., Nafees, M., Nadeem, H., Akram, M., and Fahad, S., 2021. Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. Journal of Plant Growth Regulation, 40(5), 2079-2091.

Strigalakton Uygulamalarının Bitkilerde Abiyotik Stres Şartlarına Toleransı Artırmadaki Etkileri

Year 2024, Volume: 7 Issue: 2, 71 - 85
https://doi.org/10.55257/ethabd.1552107

Abstract

Abiyotik stres, belirli bir ortamda herhangi bir abiyotik faktörün bitki üzerindeki olumsuz etkisi olup bitkilerin büyümesini ve gelişimini etkiler. Kuraklık, tuzluluk ve aşırı sıcaklıklar gibi stres faktörleri genellikle birbirleriyle ilişkilidir veya birlikte bulunur. Tarımsal üretimin azalmasında büyük oranda abiyotik stres, daha düşük oranlarda ise diğer stres faktörleri etkilidir. Abiyotik stres faktörleri olarak, kuraklık, tuzluluk, yüksek ve düşük sıcaklık, sel, radyasyon, ağır metaller, oksidatif stres, rüzgâr, besin maddesi eksikliği gibi faktörler sayılabilir ve bu stres kaynakları bitki gelişimini, kaliteyi ve verimliliği olumsuz yönde etkilemektedir. Abiyotik stresler gibi çevresel stresler altında bitki büyümesini ve üretkenliği en üst düzeye çıkarmak için çeşitli stratejiler kullanılmaktadır. Alternatif ve teknik olarak daha basit bir yaklaşım, belirli bitki büyümesini düzenleyici bileşiklerin eksojen uygulaması yoluyla toleransı indüklemektir. Son yıllarda, strigalaktonlar (SL) bitkinin abiyotik streslere verdiği tepki boyunca çok sayıda fizyolojik ve moleküler yolu düzenlemedeki temel rolleri nedeniyle büyük ilgi görmüştür. Bu çalışmada, tuzluluk, kuraklık, yüksek sıcaklık ve ağır metal stresi gibi bazı abiyotik stres koşullarında yetiştirilen bitkilerde SL uygulamalarının etkileri tartışılmıştır.

References

  • Abbas, S., Javed, M. T., Ali, Q., Azeem, M., and Ali, S., 2021. Nutrient deficiency stress and relation with plant growth and development. In Engineering tolerance in crop plants against abiotic stress (pp. 239-262). CRC Press.
  • Ahemad, M., 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365-1377.
  • Ahsan, M., Zulfiqar, H., Farooq, M.A., 2023. Strigolactone (GR24) application positively regulates photosynthetic attributes, stress-related metabolites and antioxidant enzymatic activities of ornamental sunflower (Helianthus annuus cv. Vincent’s Choice) under salinity stress. Agriculture. 2023;13(1):50. doi:10.3390/agriculture13010050
  • Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., Al-Babili, S., 2012. The path from b-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351. https:// doi. org/ 10. 1126/ scien ce. 12180 94
  • Ali, A., Shah, T., Haider, G., Awan, M. I., Gohar, M., Munsif, F., and Ahmad, I., 2023. Strigolactone-mediated oxidative stress alleviation in Brassica rapa through upregulating antioxidant system under water deficit conditions. Journal of Plant Growth Regulation, 42(8), 4675-4687.
  • Alvi, A. F., Sehar, Z., Fatma, M., Masood, A., & Khan, N. A. (2022). Strigolactone: an emerging growth regulator for developing resilience in plants. Plants, 11(19), 2604.
  • Argosubekti, N. (2020). A review of heat stress signaling in plants. In IOP Conference Series: Earth and Environmental Science (Vol. 484, No. 1, p. 012041). IOP Publishing.
  • Arite, T., Kameoka, H., Kyozuka, J.,. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 2012, 31, 165–172.
  • Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253.
  • Baltacıer, G., Donat, S., and Acar, O., 2023. The effects of exogenous salicylic acid and strigolactone applications on seedling growth and antioxidant activity in tomato seedlings under short-term drought stress. Journal of the Institute of Science and Technology, 13(1), 89-101.
  • Banerjee, A., Wani, S.H., Roychoudhury, A., 2017. Epigenetic control of plant cold responses. Front Plant Sci 8:1643. https:// doi. org/ 10.3389/ fpls. 2017. 0164
  • Bashir, S., Hussain, Q., Shaaban, M., and Hu, H., 2018. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere, 211, 632-639.
  • Bhoi, A., Yadu, B., Chandra, J., Keshavkant, S., 2021. “Contribution of strigolactone in plant physiology, chormonal interaction and abiotic stresses”, Planta, 254(2), 1-21.
  • Bielach, A., Hrtyan, M., and Tognetti, V. B., 2017. Plants under stress: involvement of auxin and cytokinin. International journal of molecular sciences, 18(7), 1427.
  • Brewer, P. B., Koltai, H., and Beveridge, C. A., 2013. Diverse roles of strigolactones in plant development. Mol Plant 6:18–28. https:// doi. org/ 10. 1093/ mp/ sss130.
  • Chen, X., Shi, X., Ai, Q., Han, J., Wang, H., and Fu, Q., 2022. Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Horticultural Plant Journal, 8(5), 637-649.
  • Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J., and Yu, J., 2021. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research, 8.
  • Costa, S. F., Martins, D., Agacka-Mołdoch, M., Czubacka, A., and de Sousa Araújo, S., 2018. Strategies to alleviate salinity stress in plants. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms, 307-337.
  • Danish, S., Hareem, M., Dawar, K., Naz, T., Iqbal, M. M., Ansari, M. J., and Datta, R. (2024). The role of strigolactone in alleviating salinity stress in chili pepper. BMC Plant Biology, 24(1), 209.
  • Decker, E. L., Alder, A., and Hunn, S., 2017. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol 216:455–468. https:// doi.org/10.1111/nph.14506.
  • DalCorso, G., Manara, A., Piasentin, S., and Furini, A., 2014. Nutrient metal elements in plants. Metallomics, 6(10), 1770-1788.
  • Ekinci, M., Yildirim, E., Dursun, A., Turan, M., 2012. “Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Hortscıence, 47(5), 631–636.
  • Faisal, M., Alatar, A. A., Doležal, K., and Shekhawat, M. S., 2024. Strigolactone analogue GR24 mediated somatic embryogenesis from leaf tissues of Santalum album L. In Vitro Cellular & Developmental Biology-Plant, 60(1), 39-49
  • Faizan, M., Cheng, S. H., Tonny, S. H., and Robab, M. I., 2022. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. Plant Physiology and Biochemistry.
  • Farooq, M., Hussain, M., Wahid, A., and Siddique, K. H. M., 2012. Drought stress in plants: an overview. Plant responses to drought stress: From morphological to molecular features, 1-33.
  • Foo, E., and Davies, N.W., 2011. Strigolactones promote nodulation in pea. Planta 2011, 234, 1073–1081.
  • Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G., 2004. Rapid and tissue‐specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of experimental botany, 55(399), 1115-1123.
  • Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F., 2008. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L seedlings. Plant Soil Environ. 54:374–381.
  • Garcia, K., and Zimmermann, S. D., 2014. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 5, 337.
  • Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., and Yoshioka, T., 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany, 55(394), 111-118.
  • Guo, T., Gull, S., Ali, M. M., Yousef, A. F., Ercisli, S., Kalaji, H. M., and Ghareeb, R. Y., 2022. Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Reports, 12(1), 11324.
  • Guo, S., Wei, X., Ma, B., Ma, Y., Yu, Z., and Li, P., 2023. Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense. Stress Biology, 3(1), 54.
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., and Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684.
  • Hu, Z., Yan, H., Yang, J., Yamaguchi, S., Maekawa, M., Takamure, I., Tsutsumi, N., Kyozuka, J., and Nakazono, M., 2010. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol. 51, 1136–1142.
  • Jagadish, S. K., Way, D. A., and Sharkey, T. D., 2021. Plant heat stress: Concepts directing future research. Plant, cell & environment, 44(7), 1992-2005.
  • Isayenkov, S.V., and Maathuis, F.J., 2019. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 10, 80.
  • Kapoor, R. T., Ahmad, A., Shakoor, A., Paray, B. A., and Ahmad, P., 2023. Nitric oxide and strigolactone alleviate mercury-induced oxidative stress in Lens culinaris L. by modulating glyoxalase and antioxidant defense system. Plants, 12(9), 1894.
  • Kapoor, R. T., Alam, P., Chen, Y., and Ahmad, P., 2024. Strigolactones in plants: from development to abiotic stress management. Journal of Plant Growth Regulation, 43(3), 903-919.
  • Karthika, K. S., Rashmi, I., and Parvathi, M. S., 2018. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In: Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 1–49.
  • Khan, W., Khan, A., Ullah, A., Haq, S. I. U., Hassan, N., Iqbal, B., and Elansary, H. O., 2023. Insights concerning advancing the agroecological sustainability of salinity tolerance through proteomics profiling of hexaploid wheat (Triticum aestivum L.). South African Journal of Botany, 158, 142-148.
  • Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., and Novák, J., 2023. Abiotic stress in crop production. International Journal of Molecular Sciences, 24(7), 6603.
  • Kapulnik, Y., Delaux, P.M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Delmas, N. S., Combier, J. P., Becard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., and Koltai, H., 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis thaliana. Planta 233:209–216. https:// doi. org/ 10. 1007/ s00425- 010- 1310-y.
  • Kleman, J., and Matusova, R., 2023. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia, 78(2), 307-318.
  • Kumar, S., Kumar, S., and Mohapatra, T., 2021. Interaction between macro‐and micro-nutrients in plants. Frontiers in Plant Science, 12, 665583.
  • Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., Shealtiel, H., Bhattacharya, C., Eliahu, E., and Resnick, N., 2010. Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J. Plant Growth Regul. 2010, 29, 129–136.
  • Kountche, B. A., Jamil, M., and Yonli, D., 2019. Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub-Saharan Africa. PLANTS, PEOPLE. PLANET 1:107–118. https://doi.org/10.1002/ppp3.32.
  • Lechat, M. M., Brun, G., Montiel, G., Véronési, C., Simier, P., Thoiron, S., and Delavault, P. 2015. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. Journal of experimental botany, 66(11), 3129-3140.
  • Li, Y., Li, S., Feng, Q., Zhang, J., Han, X., Zhang, L., and Zhou, J., 2022. Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. Seedlings under drought stress. BMC Plant Biology, 22(1), 578.
  • Li, C., Lu, X., Liu, Y., Xu, J., and Yu, W., 2023. Strigolactone alleviates the adverse effects of salt stress on seed germination in cucumber by enhancing antioxidant capacity. Antioxidants, 12(5), 1043.
  • Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., and Zhao, Y. 2020. “Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings”, Scientific Reports, 10(1), 1-8.
  • Lovejoy, C., and Smemo, K. A., 2021. Strigolactone significantly increases lead uptake by dwarf sunflower (Helianthus annuus). Bioremediation Journal, 25(3), 191-196.
  • Lu, X., Liu, X., Xu, J., Liu, Y., Chi, Y., Yu, W., and Li, C., 2023. Strigolactone-mediated trehalose enhances salt resistance in tomato seedlings. Horticulturae, 9(7), 770.
  • Luqman, M., Shahbaz, M., Maqsood, M. F., Farhat, F., Zulfiqar, U., Siddiqui, M. H., and Haider, F. U., 2023. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress. Plant Signaling & Behavior, 18(1), 2262795. Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., and Zhang, C., 2017. Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front. Plant Sci. 8, 1671. https:// doi.org/10.3389/fpls.2017.01671.
  • Maggio, A., Raimondi, G., Martino, A., and De Pascale, S., 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 59: 276–282.
  • Mahajan, S., and Tuteja, N., 2005. Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158.
  • Marzec, M., Muszynska, A., and Gruszka, D., 2013. The role of strigolactones in nutrient-stress responses in plants. International Journal of Molecular Sciences, 14(5), 9286-9304.
  • Marzec, M., and Melzer, M., 2018. Regulation of root development and architecture by strigolactones under optimal and nutrient deficiency conditions. International journal of molecular sciences, 19(7), 1887.
  • Mehrabi, S. S., Sabokdast, M., Bihamta, M. R., Soorni, J., and Mirmazloum, I., 2024. Strigolactone-mediated amelioration of salinity stress in bread wheat: insights from phytochemical and ion channels related genes expression analyses. Plant Stress, 11, 100324.
  • Mickelbart, M. V., Hasegawa, P. M., Bailey-Serres, J., 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics. 16: 237–251.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., and Fang, Y., 2018. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110. https:// doi. org/ 10. 1016/j. plaphy. 2018. 11. 037.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., and Fang, Y., 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., and Tran, L. S. P., 2018. “Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research”, Plant, cell & environment, 41(10), 2227-2243.
  • Mostofa, M. G., Ha, C. V., and Rahman, M. M., 2021. Strigolactones modulate cellular antioxidant defense mechanisms to mitigate arsenate toxicity in rice shoots. Antioxidants 10:1815. https://doi. org/10.3390/antiox10111815.
  • Munns, R., and Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681. Naser, V., and Shani, E., 2016. Auxin response under osmotic stress. Plant molecular biology, 91(6), 661-672. Nawaz, G., and Mussarat, S., 2023. Strigolactone in Abiotic Stress Tolerance of Crop Plants. In Strigolactones, Alkamides and Karrikins in Plants (pp. 75-86). CRC Press.
  • Niu, K., Zhang, R., and Zhu, R., 2021. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. Ecotoxicol Environ Saf 212:112002. https://doi.org/10.1016/j. ecoenv.2021.112002.
  • Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., Pospíšil, T., Strnad, M., and Van Staden, J., 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry, 155, 965-979.
  • Osakabe, Y., Yamaguchi‐Shinozaki, K., Shinozaki, K., and Tran, L. S. P., 2014. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202(1), 35-49. Pandey, A., Sharma, M., and Pandey, G. K., 2016. Emerging roles of strigolactones in plant responses to stress and development. Frontiers in Plant Science, 7, 434.
  • Parida, A. K., and Das, A. B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safe. 60:324–349.
  • Prasad, M. N. V., and Strazalka, K., 2002. Physiology and biochemistry of metal toxicity and tolerance in plants. Dordrecht, Kluwer Academic Publishers, 432 p. ISBN 1-40-200468-0.
  • Raja, V., Qadir, S. U., Kumar, N., Alsahli, A. A., Rinklebe, J., and Ahmad, P., 2023. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiology and Biochemistry, 201, 107872.
  • Raja, V., Singh, K., Qadir, S. U., Singh, J., and Kim, K. H., 2024. Alleviation of cadmium-induced oxidative damage through application of zinc oxide nanoparticles and strigolactones in Solanum lycopersicum L. Environmental Science: Nano.
  • Ren, C. G., Kong, C. C., and Xie, Z. H., 2018. Role of abscisic acid in strigolactoneinduced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology 18: 74.
  • Ruiz-Lozano, J. M., Aroca, R., Zamarreno, A. M., Molina, S., Andreo-Jimenez, B., Porcel, R., Garcia-Mina, J. M., Ruyter-Spira, C., and Lopez Raez, J. A., 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452.https:// doi. org/ 10. 1111/ pce. 12631.
  • Qiu, C. W., Zhang, C., and Wang, N. H., 2021. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut 273:116486. https://doi.org/10.1016/j.envpol.2021.116486.
  • Qu, A. L., Ding, Y. F., Jiang, Q., and Zhu, C., 2013. Molecular mechanisms of the plant heat stress response. Biochemical and biophysical research communications, 432(2), 203-207.
  • Saeed, W., Naseem, S., and Ali, Z., 2017. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Frontiers in Plant Science, 8, 1487.
  • Sattar, A., Ul-Allah, S., and Ijaz, M., 2021. Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun 50:263–272. https://doi.org/10.1007/s42976-021-00171-z.
  • Sattar, A., Ul-Allah, S., Ijaz, M., Sher, A., Butt, M., Abbas, T., and Alharbi, S. A., 2022. “Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms”, Cereal Research Communications, 50(2), 263-272.
  • Sanz, L., Albertos, P., Mateos, I., Sanchez-Vicente, I., Lechon, T., Fernandez-Marcos, M., and Lorenzo, O., 2015. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 66, 2857–2868.
  • Sedaghat, M., Sarvestani, Z. T., Emam, Y., Bidgoli, A. M., and Sorooshzadeh, A., 2020. Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russian Journal of Plant Physiology, 67, 733-739.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C. J., Celi, L., and Schubert, A., 2020. Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9:612. https:// doi. org/ 10. 3390/ plant s9050 612.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., and Battaglia, M. L., 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Shah, T., Asad, M., Khan, Z., Amjad, K., Alsahli, A. A., and D'amato, R., 2023. Strigolactone decreases cadmium concentrations by regulating cadmium localization and glyoxalase defense system: Effects on nodules organic acids and soybean yield. Chemosphere, 335, 139028.
  • Shahzad, K., Danish, S., Mubeen, S., Dawar, K., Fahad, S., Hasnain, Z., and Almoallim, H. S., 2024. Minimization of heavy metal toxicity in radish (Raphanus sativus) by strigolactone and biochar. Scientific Reports, 14(1), 13616.
  • Sharma, P., Jha, A. B., and Dubey, R. S., 2024. Strigolactones: Coordination with other Phytohormones and Enhancement of Abiotic Stress Responses. Environmental and Experimental Botany, 105782.
  • Shindo, M., Shimomura, K., Yamaguchi, S., and Umehara, M., 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct 2:e00050. https://doi.org/10.1002/pld3.50.
  • Shu, H., Xu, K., Li, X., Liu, J., Altaf, M. A., Fu, H., and Wang, Z., 2024. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. Plant Cell Reports, 43(4), 106.
  • Song, M., Zhou, S., Hu, N., Li, J., Huang, Y., Zhang, J., and He, D., 2023. Exogenous strigolactones alleviate drought stress in wheat (Triticum aestivum L.) by promoting cell wall biogenesis to optimize root architecture. Plant Physiology and Biochemistry, 204, 108121.
  • Soto, M. J., Fernandez-Aparicio, M., Castellanos-Morales, V., Garcia-Garrido, J. A., Delgado, M. J., and Vierheilig, H., 2010. First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol. Biochem. 42, 383–385.
  • Stavi, I., Thevs, N., and Priori, S., 2021. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 330, 712831.
  • Tai, Z., Yin, X., Fang, Z., Shi, G., Lou, L., and Cai, Q., 2017. Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. International Journal of Environmental Research and Public Health, 14(8), 852.
  • Talaat, N. B., and Shawky, B. T., 2016. Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. Journal of Plant Growth Regulation, 35(2), 518-533.
  • Tariq, A., Ullah, I., Sardans, J., Graciano, C., Mussarat, S., Ullah, A., ... & Peñuelas, J. (2023). Strigolactones can be a potential tool to fight environmental stresses in arid lands. Environmental Research, 229, 115966.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., and Tsuchiya, Y., 2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117. https:// doi. org/ 10. 1093/ pcp/ pcr176.
  • Trabelsi, I., Yoneyama, K., and Abbes, Z., 2017. Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South Afr J Bot 108:15–22. https://doi.org/10.1016/j.sajb.2016.09.009.
  • Trasoletti, M., Visentin, I., Campo, E., Schubert, A., and Cardinale, F., 2022. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant, Cell & Environment, 45(12), 3611-3630.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., Yamaguchi, S., and McCourt, P., 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749. https:// doi. org/ 10. 1038/ nchem bio. 435.
  • Umehara, M., 2011. Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnol 28:429–437. https://doi.org/10.5511/plantbiotechnology.11.1109a.
  • Xie, Y., Liu, Y., Ma, M., Zhou, Q., Zhao, Y., and Zhao, B., 2020. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat. Commun. 11:1955. doi: 10.1038/s41467-020-15893-7.
  • van Zeijl, A., Liu, W., Xiao, T. T., Kohlen, W., Yang, W. C., Bisseling, T., and Geurts, R., 2015. “The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis”, BMC Plant Biology, 15(1), 1-15.
  • Visentin, I., Pagliarani, C., Deva, E., Caracci, A., Turečková, V., Novák, O., and Cardinale, F., 2020. A novel strigolactone‐miR156 module controls stomatal behaviour during drought recovery. Plant, cell & environment, 43(7), 1613-1624.
  • Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., and Patel, M., 2020. Effect of Abiotic Stress on Crops. IntechOpen. doi: 10.5772/intechopen.88434.
  • Yang, Y., Zheng, Q., Zhou, K., Xiao, Y., Huang, C., Hu, R., and Wang, J., 2024. Effects of exogenous strigolactone on the cadmium accumulation in Galinsoga parviflora Cav. Chemistry and Ecology, 40(3), 292-304.
  • Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., and Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 61: 1673-1689. Yoneyama, K., 2019. How do strigolactones ameliorate nutrient deficiencies in plants?. Cold Spring Harbor Perspectives in Biology, 11(8), a034686.
  • Yoneyama, K., Kisugi, T., Xie, X., Arakawa, R., Ezawa, T., Nomura, T., and Yoneyama, K., 2015. Shoot derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta 241:687–698. https:// doi. org/ 10. 1007/s00425- 014- 2208-x.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M., Castroverde, C. D. M., and Aftab, T., 2021. “Mechanistic insights into strigolactone biosynthesis, signaling, and regulation during plant growth and development”. Journal of Plant Growth Regulation. 40(5), 1836-1852.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M., Khan, R., and Aftab, T., 2022. Exogenous Strigolactone (GR24) Positively Regulates Growth, Photosynthesis, and Improves Glandular Trichome Attributes for Enhanced Artemisinin Production in Artemisia annua”. Journal of Plant Growth Regulation. 1-10.
  • Wani, K. I., Naeem, M., Khan, M. M. A. and Afab, T., 2023. Insights into strigolactone (GR24) mediated regulation of cadmium-induced changes and ROS metabolism in Artemisia annua. J. Hazard Mater. 448, 130899.
  • Waters, M. T., Scaffidi, A., Flematti, G. R., and Smith, S. M., 2012. Karrikins force a rethink of strigolactone mode of action. Plant signaling & behavior, 7(8), 969-972.
  • Wu, F., Gao, Y., Yang, W., Sui, N., and Zhu, J., 2022. Biological functions of strigolactones and their crosstalk with other phytohormones. Frontiers in Plant Science, 13, 821563.
  • Zhang, H., Zhao, Y., and Zhu, J.K., Thriving under stress: How plants balance growth and the stress response. Dev. Cell 2020, 55, 529–543.
  • Zhang, H., Zhu, J., Gong, Z., and Zhu, J. K., 2022. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119.
  • Zhang, Y., Xu, J., Li, R., Ge, Y., Li, Y., and Li, R., 2023. Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences, 24(13), 10915.
  • Zhao, J., Qin, G., Liu, X., Li, J., Liu, C., Zhou, J., and Liu, J., 2022. Genome-wide identification and expression analysis of HAK/KUP/KT potassium transporter provides insights into genes involved in responding to potassium deficiency and salt stress in pepper (Capsicum annuum L.). 3 Biotech, 12(3), 1-14.
  • Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., and Guo, Y., 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51(1), 16-34.
  • Zhou, X., Tan, Z., and Zhou, Y., 2022. Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biol 22:30. https://doi.org/10.1186/ s12870-021-03414-7.
  • Zulfiqar, H., Shahbaz, M., Ahsan, M., Nafees, M., Nadeem, H., Akram, M., and Fahad, S., 2021. Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. Journal of Plant Growth Regulation, 40(5), 2079-2091.
There are 117 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Merve Yüce 0000-0002-0113-7071

Ertan Yıldırım 0000-0003-3369-0645

Early Pub Date October 10, 2024
Publication Date
Submission Date September 18, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Yüce, M., & Yıldırım, E. (2024). Strigalakton Uygulamalarının Bitkilerde Abiyotik Stres Şartlarına Toleransı Artırmadaki Etkileri. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 7(2), 71-85. https://doi.org/10.55257/ethabd.1552107