Research Article
BibTex RIS Cite

Büyük Akgöl’deki Su Kirliliğinin Scardinius erythrophthalmus ve Perca fluviatilis Türleri Üzerindeki Genotoksik Etki Potansiyelinin Araştırılması

Year 2025, Volume: 5 Issue: 1, 33 - 42, 04.05.2025
https://doi.org/10.59838/etoxec.1674401

Abstract

Bu çalışma, Sakarya ili sınırları içerisinde yer alan Büyük Akgöl’de yaşayan omnivor tür Scardinius erythrophthalmus ile karnivor tür Perca fluviatilis üzerinde ağır metal birikimi ve buna bağlı genotoksik etkileri değerlendirmeyi amaçlamaktadır. Bu kapsamda, balıklardan alınan periferik kan örneklerinde mikronükleus (MN) ve eritrosit çekirdek anormallikleri yöntemleri kullanılarak genotoksik etki potansiyeli değerlendirilmiştir. Ayrıca, kas dokusunda biriken Al, Fe, Zn, Cu, Mn, Pb, Cd, As, Ni, Co, Cr ve Hg gibi ağır metallerin düzeyleri analiz edilmiştir. Elde edilen bulgulara göre, çevresel kirleticilerin etkilerini yansıtan önemli düzeyde genotoksik yanıtlar her iki türde de gözlemlenmiştir. S. erythrophthalmus bireylerinde MN oranı %16’ya kadar artış gösterirken, P. fluviatilis bireylerinde bu oran %1,80 seviyesinde kalmıştır. Ayrıca, çekirdek anormalliklerinin sıklığı da türler arasında farklılık göstermiştir. Ağır metal analizlerinde, her iki türün kas dokusunda Zn, Pb, Fe, Cu, Al ve Cr gibi metallerin yüksek düzeylerde biriktiği belirlenmiş, ancak bu değerlerin çoğu referans sınırlar arasında ya da altında kalmıştır. Bu bulgular, Büyük Akgöl’deki kirliliğin balıklar üzerinde genetik düzeyde biyolojik etkiler yarattığını ve ağır metallerin balık sağlığı açısından potansiyel riskler oluşturabileceğini ortaya koymaktadır. Bu bağlamda, Büyük Akgöl çevresindeki tarım arazilerinde tarımsal kimyasal kullanımı sınırlandırılmalı ve evsel ile endüstriyel atıklar etkin şekilde kontrol altına alınmalıdır. Ağır metallerin neden olduğu genotoksik etkilerin izlenebilmesi için P. fluviatilis ve S. erythrophthalmus gibi farklı trofik düzeylerdeki türler üzerinde mevsimsel ve uzun vadeli biyomonitoring çalışmaları yürütülmelidir. Ayrıca, balıklarda biriken metallerin planktondan yırtıcı balıklara kadar besin zinciri boyunca taşınabileceği göz önünde bulundurularak, ekosistem temelli koruma stratejileri geliştirilmelidir.

Project Number

2023.05.01.1409

References

  • C A Deutsch, J J Tewksbury, R B Huey, K S Sheldon, C K Ghalambor, D C Haak, P R Martin, Impacts of climate warming on terrestrial ectotherms across latitude. PNAS, 105: 6668-6672, 2008. https://doi.org/10.1073/pnas.0709472105
  • K P Paaijmans, R L Heinig, R A Seliga, J I Blanford, S Blanford, C C Murdock, M B Thomas, Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19: 2373-2380, 2013. https://doi.org/10.1111/gcb.12240
  • C J Speights, J P Harmon, B T Barton, Contrasting the potential effects of daytime versus nighttime warming on insects. Current Opinion in Insect Science, 23: 1-6, 2017. https://doi.org/10.1016/j.cois.2017.06. 005
  • F Johansson, G Orizaola, V Nilsson-Örtman, Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports, 10: 8822, 2020. https://doi.org/10.1038/s41598-020-65608-7
  • K E Marshall, K Gotthard, C M Williams, Evolutionary impacts of winter climate change on insects. Current Opinion in Insect Science. 41: 54-62, 2020. https://doi.org/10.1016/j.cois.2020.06.003
  • R Shine, Life-history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36: 23-46, 2005. https://doi.org/10.1146/annurev.ecolsys.36.102003.152631
  • R B Huey, L Ma, O Levy, M R Kearney, Three questions about the eco-physiology of overwintering underground. Ecology Letters, 24: 170-185, 2021. https://doi.org/10.1111/ele.13636
  • S Sensoy, M Demircan, Y Ulupinar, I Balta, Climate of Turkey. Turkish state meteorological service, 401: 1-13, 2008.
  • Soil Temperature. Available online: https://soiltemperature.app/ (last accessed on 31 January 2024).
  • J U Van Dyke, Cues for reproduction in squamate reptiles, In: Rheubert JL, Siegel DS, Trauth SE (eds) Reproductive Biology and Phylogeny of Lizards and Tuatara. CRC Press, Boca Raton, 109-143, 2014.
  • M Kurnaz, B Kutrup, U Bülbül, An Exceptional Activity for Darevskia derjugini (Nikolsky, 1898) from Turkey. Ecologia Balkanica, 8: 91-93, 2016.
  • E Bestion, A Teyssier, M Richard, J Clobert, J Cote, Live fast, die young: experimental evidence of population extinction risk due to climate change. PLoS Biology, 13: e1002281, 2015. https://doi.org/10.1371/journal.pbio.1002281
  • M M Muñoz, K J Feeley, P H Martin, V R Farallo, The multidimensional (and contrasting) efects of environmental warming on a group of montane tropical lizards. Functional Ecology, 36: 419-431, 2021. https://doi.org/10.1111/1365-2435.13950
  • J B Moss, K J MacLeod, A quantitative synthesis of and predictive framework for studying winter warming effects in reptiles. Oecologia, 200: 259-271, 2022.
  • G R Ultsch, Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biological Reviews, 64: 435-515, 1989. https://doi.org/10.1111/j.1469-185X.1989. tb00683.x
  • E J Newton, T B Herman, Habitat, movements, and behaviour of overwintering Blanding’s turtles (Emydoidea blandingii) in Nova Scotia. Canadian Journal of Zoology, 87: 299-309, 2009.
  • C N Özgül, D Kurtul, Ç Gül, M Tosunoğlu, Unusual Winter Activity of Some Amphibian and Reptile Species Living in Bozcaada (Çanakkale, Türkiye). Journal of Anatolian Environmental and Animal Sciences, 7: 244-250, 2022.
  • M K Şahin, Unusual mating behavior of Apathya cappadocica in the winter season from southeastern Anatolia. SRLS, 2: 49-53, 2021.
  • H Koç, U Bülbül, B Kutrup, Is the Spinytailed Lizard Darevskia rudis (Bedriaga, 1886) Active All Year?. Ecologia Balkanica, 10: 47-51, 2018.
  • U Bülbül, H Koç, Y Orhan, Y Odabaş, B Kutrup, Early waking from hibernation in some amphibian and reptile species from Gümüşhane Province of Turkey. Sinop Üniversitesi Fen Bilimleri Dergisi, 4: 63-70, 2019.
  • V Vongrej, R Smolinský, E Bulánková, E, J Jandzik, Extraordinary winter activity of the green lizard Lacerta viridis (Laurenti, 1768) in southwestern Slovakia. Herpetozoa, 20: 173, 2008.
  • PA Stone, H M Marinoni, S Laverty, A M Fenwick, Winter Activity in a Northern Population of Mediterranean Geckos (Hemidactylus turcicus). Herpetological Conservation Biology, 16: 405-411, 2021.
  • I Mollov, G Georgiev, S Basheva, Is the Kotschy’s Gecko Mediodactylus kotschyi (Steindachner, 1870) (Reptilia: Gekkonidae) active during the winter?. ZooNotes, 84: 1-3, 2015.
  • M Franzen, Zur Winterlichen Aktivität Einiger Echsen in der Südlichen Türkei. Herpetofauna, 8: 6-10, 1986.
  • G Krastev, E Vacheva, B Naumov, Winter activity of the snake-eyed lizard Ophisops elegans (Reptilia: Lacertidae) in the northwesternmost part of its range. Historia naturalis bulgarica, 45: 83-88, 2023.
  • I Buresh, Y Tsonkov, Untersuchungen über die Verbreitung der Reptilien und Amphibien in Bulgarien und auf der Balkanhalbinsel. I Teil: Schildkrötten (Testudinata) und Eidechsen (Sauria). Mitteilungen aus den Königlichen Naturwissenschaftlichen Instituten in Sofia, 6: 150-207, 1933.
  • V Beshkov, Zimnite kvartiri na zaemnovodnite i vlechugite (The winter lodgings of the amphibians and the reptiles). Priroda i znanie, 28: 9-11, 1977.
  • L Rugiero, Winter activity of a Common Wall Lizard (Podarcis muralis) population in central Italy. Russian Journal of Herpetology, 2: 148-152, 1995.
  • V Beshkov, K Nanev, Zemnovodni i vlechugi v Bulgaria (Amphibians and Reptiles in Bulgaria). Sofia-Moscow. Pensoft, 2002.
  • A Westerström, Some notes on the herpetofauna in Western Bulgaria, In Herpetologia Petropolitana, Proceedings of the 12th Ordinary General Meeting of the Societas Europaea Herpetologica, St. Petersburg, 2005; 241-244.
  • N Tzankov, G Popgeorgiev, B Naumov, A Stojanov, Y Kornilev, B Petrov, A Dyugmedzhiev, V Vergilov, R Dragomirova, S Lukanov, A Westerström, Opredelitel na zemnovodnite i vlechugite v Priroden Park Vitosha (Identification guide of the amphibians and reptiles in Vitosha Nature Park). Directorate of Vitosha Nature Park. Bulgaria, 2014.
  • D V Tinkle, N F Hadley, Reproductive effort and winter activity in the viviparous Montane Lizard Sceloporus jarrovi. Copeia, 272-277, 1973.
  • C J Grenot, L Garcin, J Dao, J P Hérold, B Fahys, H Tséré-Pages, How does the European common lizard, Lacerta vivipara, survive the cold of winter?. Comparitive Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 127: 71-80, 2000.
  • General Directorate of Meteorology. Avalaible on: https://www.mgm.gov.tr/. (accessed on 28 November 2023)
  • M Kurnaz, M K Şahin, Unusual Winter Activity Observations of Two Newt Species (Ommatotriton ophryticus & Triturus ivanbureschi) from the Anatolian Peninsula. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7: 337-342, 2021.
  • M A L Zuffi, M Macchia, P Ioalè, Giudici, F. Winter activity in a coastal population of Vipera aspis (Reptilia, Viperidae). Revue d'Écologie, 54: 365-374, 1999.
  • R Duguy, Biologie de la latence hivernale chez Vipera aspis L. Vie et milieu, 311-444, 1963.
  • M Aleksiuk, Reptilian hibernation: evidence of adaptive strategies in Thamnophis sirtalis parietalis. Copeia. 170-178, 1976.
  • S H Girons, Les risques de prédation liés à la reproduction chez un Viperidae ovovivipare, Vipera aspis L., d'après les observations visuelles. Amphibia-Reptilia, 15: 413-416, 1994.
  • J S Jacob, Painter, C.W. Overwinter thermal ecology of Crotalus viridis in the north-central plains of New Mexico. Copeia, 799-805, 1980.
  • B W Grant, Trade‐offs in activity time and physiological performance for thermoregulating desert lizards, Sceloporus merriami. Ecology,71: 2323-2333, 1990.
  • J. M Kaczmarek, M Piasecka, M Kaczmarski, Winter activity of the smooth newt Lissotriton vulgaris in Central Europe. The Herpetological Bullletin, 144: 21-22, 2018.
  • A, Altunışık, A case study on earlier activation of the variable toad, Bufotes variabilis (Pallas, 1769). Biological Diversity and Conservation, 12: 38-40, 2019.
  • U Bülbül, H Koç, The unusual winter activity and negative effects of pollution on breeding of Ommatotriton ophryticus (Berthold, 1846) in Turkey. Sinopjns, 5: 77-83, 2020.
  • A Altunışık, Unusual winter activity of Bufo bufo (Anura: Bufonidae). Turkish Journal of Biodiversity, 4: 105-107, 2021. H Özkan, U Bülbül, The Winter Activity of the Endemic Lizard Species, Anatololacerta danfordi (Günther, 1876). Journal of the Institute of Science and Technology, 11: 99-105,2021.

Investigation of Genotoxic Effect Potential of Water Pollution in Büyük Akgöl on Scardinius erythrophthalmus and Perca fluviatilis

Year 2025, Volume: 5 Issue: 1, 33 - 42, 04.05.2025
https://doi.org/10.59838/etoxec.1674401

Abstract

This study aims to evaluate heavy metal accumulation and related genotoxic effects on two species, the omnivorous Scardinius erythrophthalmus and the carnivorous Perca fluviatilis, living in Büyük Akgöl within the borders of Sakarya province. In this context, the genotoxic effect potential was evaluated using micronucleus (MN) and erythrocyte nuclear abnormalities methods in peripheral blood samples taken from fish. In addition, the levels of heavy metals such as Al, Fe, Zn, Cu, Mn, Pb, Cd, As, Ni, Co, Cr and Hg in muscle tissues were analyzed. According to the findings, significant genotoxic responses reflecting the effects of environmental pollutants were observed in both species. While the MN rate increased up to 16% in S. erythrophthalmus individuals, this rate remained at 1.80% in P. fluviatilis. In addition, nuclear abnormality frequencies also differed among species. In heavy metal analyses, it was determined that metals such as Zn, Pb, Fe, Cu, Al and Cr accumulated at high levels in muscle tissue in both species and these values were found to be between or below reference values. These findings reveal that pollution in Büyük Akgöl creates biological effects at the genetic level and that heavy metals may pose potential risks to fish health. In this context, it is recommended that agricultural chemical use be limited in agricultural lands around Büyük Akgöl and that domestic and industrial wastes be effectively controlled. Long-term, seasonal biomonitoring studies should be conducted on species at different trophic levels, such as P. fluviatilis.and S. erythrophthalmus, in order to monitor genotoxic effects caused by heavy metals. In addition, considering that metals accumulated in fish can be transferred along the food chain from plankton to predatory fish, ecosystem-based protection strategies should be developed.

Supporting Institution

Düzce Üniversitesi

Project Number

2023.05.01.1409

Thanks

Authors thanks to thank Havva ÖZER and Fatma DEMİR for their contributions to laboratory and field studies

References

  • C A Deutsch, J J Tewksbury, R B Huey, K S Sheldon, C K Ghalambor, D C Haak, P R Martin, Impacts of climate warming on terrestrial ectotherms across latitude. PNAS, 105: 6668-6672, 2008. https://doi.org/10.1073/pnas.0709472105
  • K P Paaijmans, R L Heinig, R A Seliga, J I Blanford, S Blanford, C C Murdock, M B Thomas, Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19: 2373-2380, 2013. https://doi.org/10.1111/gcb.12240
  • C J Speights, J P Harmon, B T Barton, Contrasting the potential effects of daytime versus nighttime warming on insects. Current Opinion in Insect Science, 23: 1-6, 2017. https://doi.org/10.1016/j.cois.2017.06. 005
  • F Johansson, G Orizaola, V Nilsson-Örtman, Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports, 10: 8822, 2020. https://doi.org/10.1038/s41598-020-65608-7
  • K E Marshall, K Gotthard, C M Williams, Evolutionary impacts of winter climate change on insects. Current Opinion in Insect Science. 41: 54-62, 2020. https://doi.org/10.1016/j.cois.2020.06.003
  • R Shine, Life-history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36: 23-46, 2005. https://doi.org/10.1146/annurev.ecolsys.36.102003.152631
  • R B Huey, L Ma, O Levy, M R Kearney, Three questions about the eco-physiology of overwintering underground. Ecology Letters, 24: 170-185, 2021. https://doi.org/10.1111/ele.13636
  • S Sensoy, M Demircan, Y Ulupinar, I Balta, Climate of Turkey. Turkish state meteorological service, 401: 1-13, 2008.
  • Soil Temperature. Available online: https://soiltemperature.app/ (last accessed on 31 January 2024).
  • J U Van Dyke, Cues for reproduction in squamate reptiles, In: Rheubert JL, Siegel DS, Trauth SE (eds) Reproductive Biology and Phylogeny of Lizards and Tuatara. CRC Press, Boca Raton, 109-143, 2014.
  • M Kurnaz, B Kutrup, U Bülbül, An Exceptional Activity for Darevskia derjugini (Nikolsky, 1898) from Turkey. Ecologia Balkanica, 8: 91-93, 2016.
  • E Bestion, A Teyssier, M Richard, J Clobert, J Cote, Live fast, die young: experimental evidence of population extinction risk due to climate change. PLoS Biology, 13: e1002281, 2015. https://doi.org/10.1371/journal.pbio.1002281
  • M M Muñoz, K J Feeley, P H Martin, V R Farallo, The multidimensional (and contrasting) efects of environmental warming on a group of montane tropical lizards. Functional Ecology, 36: 419-431, 2021. https://doi.org/10.1111/1365-2435.13950
  • J B Moss, K J MacLeod, A quantitative synthesis of and predictive framework for studying winter warming effects in reptiles. Oecologia, 200: 259-271, 2022.
  • G R Ultsch, Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biological Reviews, 64: 435-515, 1989. https://doi.org/10.1111/j.1469-185X.1989. tb00683.x
  • E J Newton, T B Herman, Habitat, movements, and behaviour of overwintering Blanding’s turtles (Emydoidea blandingii) in Nova Scotia. Canadian Journal of Zoology, 87: 299-309, 2009.
  • C N Özgül, D Kurtul, Ç Gül, M Tosunoğlu, Unusual Winter Activity of Some Amphibian and Reptile Species Living in Bozcaada (Çanakkale, Türkiye). Journal of Anatolian Environmental and Animal Sciences, 7: 244-250, 2022.
  • M K Şahin, Unusual mating behavior of Apathya cappadocica in the winter season from southeastern Anatolia. SRLS, 2: 49-53, 2021.
  • H Koç, U Bülbül, B Kutrup, Is the Spinytailed Lizard Darevskia rudis (Bedriaga, 1886) Active All Year?. Ecologia Balkanica, 10: 47-51, 2018.
  • U Bülbül, H Koç, Y Orhan, Y Odabaş, B Kutrup, Early waking from hibernation in some amphibian and reptile species from Gümüşhane Province of Turkey. Sinop Üniversitesi Fen Bilimleri Dergisi, 4: 63-70, 2019.
  • V Vongrej, R Smolinský, E Bulánková, E, J Jandzik, Extraordinary winter activity of the green lizard Lacerta viridis (Laurenti, 1768) in southwestern Slovakia. Herpetozoa, 20: 173, 2008.
  • PA Stone, H M Marinoni, S Laverty, A M Fenwick, Winter Activity in a Northern Population of Mediterranean Geckos (Hemidactylus turcicus). Herpetological Conservation Biology, 16: 405-411, 2021.
  • I Mollov, G Georgiev, S Basheva, Is the Kotschy’s Gecko Mediodactylus kotschyi (Steindachner, 1870) (Reptilia: Gekkonidae) active during the winter?. ZooNotes, 84: 1-3, 2015.
  • M Franzen, Zur Winterlichen Aktivität Einiger Echsen in der Südlichen Türkei. Herpetofauna, 8: 6-10, 1986.
  • G Krastev, E Vacheva, B Naumov, Winter activity of the snake-eyed lizard Ophisops elegans (Reptilia: Lacertidae) in the northwesternmost part of its range. Historia naturalis bulgarica, 45: 83-88, 2023.
  • I Buresh, Y Tsonkov, Untersuchungen über die Verbreitung der Reptilien und Amphibien in Bulgarien und auf der Balkanhalbinsel. I Teil: Schildkrötten (Testudinata) und Eidechsen (Sauria). Mitteilungen aus den Königlichen Naturwissenschaftlichen Instituten in Sofia, 6: 150-207, 1933.
  • V Beshkov, Zimnite kvartiri na zaemnovodnite i vlechugite (The winter lodgings of the amphibians and the reptiles). Priroda i znanie, 28: 9-11, 1977.
  • L Rugiero, Winter activity of a Common Wall Lizard (Podarcis muralis) population in central Italy. Russian Journal of Herpetology, 2: 148-152, 1995.
  • V Beshkov, K Nanev, Zemnovodni i vlechugi v Bulgaria (Amphibians and Reptiles in Bulgaria). Sofia-Moscow. Pensoft, 2002.
  • A Westerström, Some notes on the herpetofauna in Western Bulgaria, In Herpetologia Petropolitana, Proceedings of the 12th Ordinary General Meeting of the Societas Europaea Herpetologica, St. Petersburg, 2005; 241-244.
  • N Tzankov, G Popgeorgiev, B Naumov, A Stojanov, Y Kornilev, B Petrov, A Dyugmedzhiev, V Vergilov, R Dragomirova, S Lukanov, A Westerström, Opredelitel na zemnovodnite i vlechugite v Priroden Park Vitosha (Identification guide of the amphibians and reptiles in Vitosha Nature Park). Directorate of Vitosha Nature Park. Bulgaria, 2014.
  • D V Tinkle, N F Hadley, Reproductive effort and winter activity in the viviparous Montane Lizard Sceloporus jarrovi. Copeia, 272-277, 1973.
  • C J Grenot, L Garcin, J Dao, J P Hérold, B Fahys, H Tséré-Pages, How does the European common lizard, Lacerta vivipara, survive the cold of winter?. Comparitive Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 127: 71-80, 2000.
  • General Directorate of Meteorology. Avalaible on: https://www.mgm.gov.tr/. (accessed on 28 November 2023)
  • M Kurnaz, M K Şahin, Unusual Winter Activity Observations of Two Newt Species (Ommatotriton ophryticus & Triturus ivanbureschi) from the Anatolian Peninsula. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7: 337-342, 2021.
  • M A L Zuffi, M Macchia, P Ioalè, Giudici, F. Winter activity in a coastal population of Vipera aspis (Reptilia, Viperidae). Revue d'Écologie, 54: 365-374, 1999.
  • R Duguy, Biologie de la latence hivernale chez Vipera aspis L. Vie et milieu, 311-444, 1963.
  • M Aleksiuk, Reptilian hibernation: evidence of adaptive strategies in Thamnophis sirtalis parietalis. Copeia. 170-178, 1976.
  • S H Girons, Les risques de prédation liés à la reproduction chez un Viperidae ovovivipare, Vipera aspis L., d'après les observations visuelles. Amphibia-Reptilia, 15: 413-416, 1994.
  • J S Jacob, Painter, C.W. Overwinter thermal ecology of Crotalus viridis in the north-central plains of New Mexico. Copeia, 799-805, 1980.
  • B W Grant, Trade‐offs in activity time and physiological performance for thermoregulating desert lizards, Sceloporus merriami. Ecology,71: 2323-2333, 1990.
  • J. M Kaczmarek, M Piasecka, M Kaczmarski, Winter activity of the smooth newt Lissotriton vulgaris in Central Europe. The Herpetological Bullletin, 144: 21-22, 2018.
  • A, Altunışık, A case study on earlier activation of the variable toad, Bufotes variabilis (Pallas, 1769). Biological Diversity and Conservation, 12: 38-40, 2019.
  • U Bülbül, H Koç, The unusual winter activity and negative effects of pollution on breeding of Ommatotriton ophryticus (Berthold, 1846) in Turkey. Sinopjns, 5: 77-83, 2020.
  • A Altunışık, Unusual winter activity of Bufo bufo (Anura: Bufonidae). Turkish Journal of Biodiversity, 4: 105-107, 2021. H Özkan, U Bülbül, The Winter Activity of the Endemic Lizard Species, Anatololacerta danfordi (Günther, 1876). Journal of the Institute of Science and Technology, 11: 99-105,2021.
There are 45 citations in total.

Details

Primary Language English
Subjects Ecotoxicology
Journal Section Research Articles
Authors

Guncha Meredova 0000-0002-4350-698X

Pınar Göç Rasgele 0000-0002-7558-3138

Şerife Gülsün Kırankaya 0000-0002-5171-9256

Project Number 2023.05.01.1409
Publication Date May 4, 2025
Submission Date April 11, 2025
Acceptance Date April 30, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

IEEE G. Meredova, P. Göç Rasgele, and Ş. G. Kırankaya, “Investigation of Genotoxic Effect Potential of Water Pollution in Büyük Akgöl on Scardinius erythrophthalmus and Perca fluviatilis”, Etoxec, vol. 5, no. 1, pp. 33–42, 2025, doi: 10.59838/etoxec.1674401.