Research Article
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 2, 56 - 61, 30.08.2022
https://doi.org/10.51753/flsrt.1094629

Abstract

References

  • Amábile-Cuevas, C. F., & Chicurel, M. E. (1992). Bacterial plasmids and gene flux. Cell, 70(2), 189-199.
  • Aygan, A., Arikan, B., Korkmaz, H., Dincer, S. & Colak, O. (2008). Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Brazilian Journal of Microbiology, 39, 547-553.
  • Belduz, A.O., Dulger, S., & Demirbag, Z. (2003). Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose utilizing, endospore forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 53, 1315-1320.
  • Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2016). The microbiological quality of food: foodborne spoilers. Woodhead Publishing.
  • Bischoff, K. M., Rooney, A. P., Li, X. L., Liu, S., & Hughes, S. R. (2006). Purification and characterization of a family 5 endo-glucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnology Letters, 28, 1761-1765.
  • Cihan, A. C. (2013). Taxonomic classification of Anoxybacillus isolates from geothermal regions in Turkey by 16S rRNA gene sequences and ARDRA, ITS-PCR, Rep-PCR analyses. Polish Journal of Microbiology, 62(2), 149.
  • Claus, D., & Berkeley, R. (1986). Genus Bacillus Cohn, 1872. In: Sneath, P. H. A., Mair, N. S., Sharpe, M. E., Holt. J. G. (eds) Bergey’s Manual of Systematic Bacteriology (pp. 1105-1139). The Williams & Wilkins Co., Baltimore.
  • Dai, J., Liu, Y., Lei, Y., Gao, Y., Han, F., Xiao, Y., & Peng, H. (2011). A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. FEMS Microbiology Letters, 320(1), 72-78.
  • David, L. A., & Alm E. J. (2011). Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469, 93-96.
  • Derekova, A., Mandeva, R., & Kambourova, M. (2008). Phylogenetic diversityof thermophilic carbohydrate degrading bacilli from Bulgarian hotsprings. World Journal of Microbiology and Biotechnology, 4, 1697-1702.
  • Dhafer, F. A. R. (2007). Isolation and identification amylase producing bacteria from Ramadi soils to get efficient local media, IRAQI Academic Scienitific Journals1, (2), 53-63.
  • Duran, C., Bulut, V. N., Gundogdu, A., Soylak, M., Belduz, A. O., & Beris, F. S. (2009). Biosorption of heavy metals by Anoxybacillus gonensis immobilized on Diaion HP-2MG. Separation Science and Technology, 44(2), 335-358.
  • Eijlander, R. T., van Hekezen, R., Bienvenue, A., Girard, V., Hoornstra, E., Johnson, N. B., ... & Wells‐Bennik, M. H. (2019). Spores in dairy–new insights in detection, enumeration and risk assessment. International Journal of Dairy Technology, 72(2), 303-315.
  • Filippidou, S., Jaussi, M., Junier, T., Wunderlin, T., Roussel-Delif, L., Jeanneret, N., ... & Junier, P. (2015). Genome sequence of Anoxybacillus geothermalis strain GSsed3, a novel thermophilic endospore-forming species. Genome Announcements, 3(3), e00575-15.
  • Goh, K. M., Kahar, U. M., Chai, Y. Y., Chong, C. S., Chai, K. P., Ranjani, V., ... & Chan, K. G. (2013). Recent discoveries and applications of Anoxybacillus. Applied Microbiology and Biotechnology, 97(4), 1475-1488.
  • Gulati, R., Saxena, R. K., & Gupta, R. (1997). A rapid plate assay for screening l‐asparaginase producing micro‐organisms. Letters in Applied Microbiology, 24(1), 23-26.
  • Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial technology, 39(2), 235-251.
  • Heinen, W., Lauwers, A. M., & Mulders, J. W. M. (1982). Bacillus flavothermus, a newly isolated facultative thermophile. Antonie van Leeuwenhoek, 48(3), 265-272.
  • Honarbakhsh, F., Amoozegar, M. A., Abolmaali, S., & Mehrshad, M. (2014). Screening for uricase enzyme from halotolerant bacteria. Iranian Journal of Public Health, 43(2), 60.
  • Kacagan, M., Canakci, S., Sandalli, C., Inan, K., Colak, D. N., & Belduz, A. O. (2008). Characterization of a xylanase from a thermophilic strain of Anoxybacillus pushchinoensis A8. Biologia, 63(5), 599-606.
  • Kambourova, M., Mandeva, R., Fiume, I., Maurelli, L., Rossi, M., & Morana, A. (2007). Hydrolysis of xylan at high temperature by co‐action of the xylanase from Anoxybacillus flavithermus BC and the β‐xylosidase/α‐arabinosidase from Sulfolobus solfataricus Oα. Journal of Applied Microbiology, 102(6), 1586-1593.
  • Karnetova, J., Matějů, J., Řezanka, T., Prochazka, P., Nohýnek, M., & Rokos, J. (1984). Estimation of lipase activity by the diffusion plate method. Folia Microbiologica, 29(4), 346-347.
  • Lama, L., Nicolaus, B., Di Donato, P., Poli, A., Oner, E. T., & Finore, I. (2009). A raw starch digesting α-amylase from the thermophilic Anoxybacillus amylolyticus. Purification and characterization. New Biotechnology, (25), S91-S92.
  • Ogun, E. (2020). Enterobacter cloacae kompleks sp. V1 suşu tarafından üretilen L-asparaginaz enziminin aktivitesi üzerine ortam bileşiminin etkisi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 77(1), 59-68.
  • Ozdemir, S., Bekler, F.M., Okumus, V., Dundar, A., & Kilinc, E. (2011a). Biosorption of 2,4-d, 2,4-DP, and 2,4-DB from aqueous solution by using thermophilic Anoxybacillus flavithermus and analysis by high-performance thin layer chromatography: Equilibrium and kinetic studies. Environmental Progress & Sustainable Energy, 31(4), 544–552.
  • Ozdemir, S., Matpan, F., Guven, K., & Baysal, Z. (2011b). Production and characterization of partially purified extracellular thermostable α-amylase by Bacillus subtilis in submerged fermentation (SmF). Preparative Biochemistry and Biotechnology, 41(4), 365-381.
  • Ozdemir, S., Okumus, V., Ulutas, M. S., Dundar, A., Akarsubasi, A. T., & Dumonted, S. (2015). Isolation of a novel thermophilic Anoxybacillus flavithermus SO-13, production, characterization and industrial applications of its thermostable [alpha]-amylase. Journal of Bioprocessing & Biotechniques, 5(7), 1.
  • Ozdemir, S., Dumontet, S., Okumus, V., Dundar, A., & Matpan, F. (2011c). Ömer ve Gecek (Afyon) Kaplıcalarından Termofilik Bakteri İzolasyonu ve Ticari Öneme Sahip α-Amilaz ve Proteaz Enzimlerinin Üretimi. Siirt Universitesi, Bilimsel Arastırma Projeleri Koordinatorlugu, 2011-SİÜFED-F4 No’lu Proje.
  • Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., ... & Tang, J. (2009). Genus IV. Anoxybacillus. In Bergey’s Manual of Systematic Bacteriology (Vol. 3, pp. 134-141). Springer New York, NY.
  • Raghunath, D. (2008). Emerging antibiotic resistance in bacteria with special reference to India. J Bioscience 12, 33-39.
  • Rainey, F. A., Fritze, D., & Stackebrandt, E. (1994). The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters, 115(2-3), 205-211.
  • Shahinyan, G., Margaryan, A., Panosyan, H., & Trchounian, A. (2017). Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs. BMC microbiology, 17(1), 1-11.
  • Sharp, R. J., Riley, P. W., & White, D. (2021). Heterotrophic thermophilic bacilli. In Thermophilic bacteria (pp. 19-50). CRC Press.
  • Tarakcioglu, S. (2016). Erzurum ılıca kaplıcalarından alınan su örneklerinden termofilik bakterilerin izolasyonu, identifikasyonu ve Bacillus thermoamylovorans st-10 izolatından lipaz enziminin saflaştırılması, karakterizasyonu. Master Thesis, (pp. 1-121). Atatürk University, Natural and Applied Sciences Institue, Erzurum.
  • Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., ... & Whitman, W. B. (2011). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes (Vol. 3). Springer Science & Business Media.
  • Wang, J., Bai, Y., Yang, P., Shi, P., Luo, H., Meng, K., ... & Yao, B. (2010). A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World Journal of Microbiology and Biotechnology, 26(5), 917-924.
  • Yavuz, E., Gunes, H., Harsa, S., & Yenidunya, A. F. (2004). Identification of extracellular enzyme producing thermophilic bacilli from Balcova (Agamemnon) geothermal site by ITS rDNA RFLP. Journal of Applied Microbiology, 97(4), 810-817.
  • Yin, L., Swanson, B., An, J., M. Hacker, B., Silverman, G. A., Dale, B. A., & Chung, W. O. (2010). Differential effects of periopathogens on host protease inhibitors SLPI, elafin, SCCA1, and SCCA2. Journal of Oral Microbiology, 2(1), 5070.

Determination of extracellular hydrolytic enzyme capabilities of some Anoxybacillus isolated from hot spring environments

Year 2022, Volume: 3 Issue: 2, 56 - 61, 30.08.2022
https://doi.org/10.51753/flsrt.1094629

Abstract

The development of microbial enzymes was a crucial event in the industrial sectors as a result of the tremendous growth of biotechnology in recent years. Popularity of waste management and bioremediation processes have both made extensive use of microorganisms’ whole cells and their enzymes. The pharmaceutical, textile, food, cosmetics, leather, paper, energy, biomaterials, fine chemicals, cellulose, and detergent sectors are some of the uses area of microbial enzymes. Depending on different uses, researchers can search for novel bacterial strains that might exhibit previously unrecognized enzymatic activity. Also for searching for plasmids that could be used as cloning vectors to tackle medication resistance in thermophilic microorganisms. The Anoxybacillus flavithermus bacteria, which were isolated from a hot spring in the Turkish city of Afyon, was employed in this investigation. The ability of the identified bacteria to produce extracellular hydrolytic enzymes was tested. For this, the activities of catalase, urease, and lipase as well as the hydrolysis of starch, casein, xylan, and asparagine were researched. Additionally, tests for antibiotic resistance were studied on the isolated bacteria using four different antibiotics (erythromycin, chloramphenicol, rifamycin, and ampicillin). All identified strains fermented starch as carbon and energy sources, and after 24 hours of incubation, amylase activity was detected at 50°C and pH 7.0. All strains were determined to be catalase-positive, and with a few exceptions, the majority of A. flavithermus strains were also found to be urease and caseinase positive. Industrial products that can be obtained from bacteria found in extreme environments will be effective in the development of future technology.

References

  • Amábile-Cuevas, C. F., & Chicurel, M. E. (1992). Bacterial plasmids and gene flux. Cell, 70(2), 189-199.
  • Aygan, A., Arikan, B., Korkmaz, H., Dincer, S. & Colak, O. (2008). Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Brazilian Journal of Microbiology, 39, 547-553.
  • Belduz, A.O., Dulger, S., & Demirbag, Z. (2003). Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose utilizing, endospore forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 53, 1315-1320.
  • Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2016). The microbiological quality of food: foodborne spoilers. Woodhead Publishing.
  • Bischoff, K. M., Rooney, A. P., Li, X. L., Liu, S., & Hughes, S. R. (2006). Purification and characterization of a family 5 endo-glucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnology Letters, 28, 1761-1765.
  • Cihan, A. C. (2013). Taxonomic classification of Anoxybacillus isolates from geothermal regions in Turkey by 16S rRNA gene sequences and ARDRA, ITS-PCR, Rep-PCR analyses. Polish Journal of Microbiology, 62(2), 149.
  • Claus, D., & Berkeley, R. (1986). Genus Bacillus Cohn, 1872. In: Sneath, P. H. A., Mair, N. S., Sharpe, M. E., Holt. J. G. (eds) Bergey’s Manual of Systematic Bacteriology (pp. 1105-1139). The Williams & Wilkins Co., Baltimore.
  • Dai, J., Liu, Y., Lei, Y., Gao, Y., Han, F., Xiao, Y., & Peng, H. (2011). A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. FEMS Microbiology Letters, 320(1), 72-78.
  • David, L. A., & Alm E. J. (2011). Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469, 93-96.
  • Derekova, A., Mandeva, R., & Kambourova, M. (2008). Phylogenetic diversityof thermophilic carbohydrate degrading bacilli from Bulgarian hotsprings. World Journal of Microbiology and Biotechnology, 4, 1697-1702.
  • Dhafer, F. A. R. (2007). Isolation and identification amylase producing bacteria from Ramadi soils to get efficient local media, IRAQI Academic Scienitific Journals1, (2), 53-63.
  • Duran, C., Bulut, V. N., Gundogdu, A., Soylak, M., Belduz, A. O., & Beris, F. S. (2009). Biosorption of heavy metals by Anoxybacillus gonensis immobilized on Diaion HP-2MG. Separation Science and Technology, 44(2), 335-358.
  • Eijlander, R. T., van Hekezen, R., Bienvenue, A., Girard, V., Hoornstra, E., Johnson, N. B., ... & Wells‐Bennik, M. H. (2019). Spores in dairy–new insights in detection, enumeration and risk assessment. International Journal of Dairy Technology, 72(2), 303-315.
  • Filippidou, S., Jaussi, M., Junier, T., Wunderlin, T., Roussel-Delif, L., Jeanneret, N., ... & Junier, P. (2015). Genome sequence of Anoxybacillus geothermalis strain GSsed3, a novel thermophilic endospore-forming species. Genome Announcements, 3(3), e00575-15.
  • Goh, K. M., Kahar, U. M., Chai, Y. Y., Chong, C. S., Chai, K. P., Ranjani, V., ... & Chan, K. G. (2013). Recent discoveries and applications of Anoxybacillus. Applied Microbiology and Biotechnology, 97(4), 1475-1488.
  • Gulati, R., Saxena, R. K., & Gupta, R. (1997). A rapid plate assay for screening l‐asparaginase producing micro‐organisms. Letters in Applied Microbiology, 24(1), 23-26.
  • Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial technology, 39(2), 235-251.
  • Heinen, W., Lauwers, A. M., & Mulders, J. W. M. (1982). Bacillus flavothermus, a newly isolated facultative thermophile. Antonie van Leeuwenhoek, 48(3), 265-272.
  • Honarbakhsh, F., Amoozegar, M. A., Abolmaali, S., & Mehrshad, M. (2014). Screening for uricase enzyme from halotolerant bacteria. Iranian Journal of Public Health, 43(2), 60.
  • Kacagan, M., Canakci, S., Sandalli, C., Inan, K., Colak, D. N., & Belduz, A. O. (2008). Characterization of a xylanase from a thermophilic strain of Anoxybacillus pushchinoensis A8. Biologia, 63(5), 599-606.
  • Kambourova, M., Mandeva, R., Fiume, I., Maurelli, L., Rossi, M., & Morana, A. (2007). Hydrolysis of xylan at high temperature by co‐action of the xylanase from Anoxybacillus flavithermus BC and the β‐xylosidase/α‐arabinosidase from Sulfolobus solfataricus Oα. Journal of Applied Microbiology, 102(6), 1586-1593.
  • Karnetova, J., Matějů, J., Řezanka, T., Prochazka, P., Nohýnek, M., & Rokos, J. (1984). Estimation of lipase activity by the diffusion plate method. Folia Microbiologica, 29(4), 346-347.
  • Lama, L., Nicolaus, B., Di Donato, P., Poli, A., Oner, E. T., & Finore, I. (2009). A raw starch digesting α-amylase from the thermophilic Anoxybacillus amylolyticus. Purification and characterization. New Biotechnology, (25), S91-S92.
  • Ogun, E. (2020). Enterobacter cloacae kompleks sp. V1 suşu tarafından üretilen L-asparaginaz enziminin aktivitesi üzerine ortam bileşiminin etkisi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 77(1), 59-68.
  • Ozdemir, S., Bekler, F.M., Okumus, V., Dundar, A., & Kilinc, E. (2011a). Biosorption of 2,4-d, 2,4-DP, and 2,4-DB from aqueous solution by using thermophilic Anoxybacillus flavithermus and analysis by high-performance thin layer chromatography: Equilibrium and kinetic studies. Environmental Progress & Sustainable Energy, 31(4), 544–552.
  • Ozdemir, S., Matpan, F., Guven, K., & Baysal, Z. (2011b). Production and characterization of partially purified extracellular thermostable α-amylase by Bacillus subtilis in submerged fermentation (SmF). Preparative Biochemistry and Biotechnology, 41(4), 365-381.
  • Ozdemir, S., Okumus, V., Ulutas, M. S., Dundar, A., Akarsubasi, A. T., & Dumonted, S. (2015). Isolation of a novel thermophilic Anoxybacillus flavithermus SO-13, production, characterization and industrial applications of its thermostable [alpha]-amylase. Journal of Bioprocessing & Biotechniques, 5(7), 1.
  • Ozdemir, S., Dumontet, S., Okumus, V., Dundar, A., & Matpan, F. (2011c). Ömer ve Gecek (Afyon) Kaplıcalarından Termofilik Bakteri İzolasyonu ve Ticari Öneme Sahip α-Amilaz ve Proteaz Enzimlerinin Üretimi. Siirt Universitesi, Bilimsel Arastırma Projeleri Koordinatorlugu, 2011-SİÜFED-F4 No’lu Proje.
  • Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., ... & Tang, J. (2009). Genus IV. Anoxybacillus. In Bergey’s Manual of Systematic Bacteriology (Vol. 3, pp. 134-141). Springer New York, NY.
  • Raghunath, D. (2008). Emerging antibiotic resistance in bacteria with special reference to India. J Bioscience 12, 33-39.
  • Rainey, F. A., Fritze, D., & Stackebrandt, E. (1994). The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters, 115(2-3), 205-211.
  • Shahinyan, G., Margaryan, A., Panosyan, H., & Trchounian, A. (2017). Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs. BMC microbiology, 17(1), 1-11.
  • Sharp, R. J., Riley, P. W., & White, D. (2021). Heterotrophic thermophilic bacilli. In Thermophilic bacteria (pp. 19-50). CRC Press.
  • Tarakcioglu, S. (2016). Erzurum ılıca kaplıcalarından alınan su örneklerinden termofilik bakterilerin izolasyonu, identifikasyonu ve Bacillus thermoamylovorans st-10 izolatından lipaz enziminin saflaştırılması, karakterizasyonu. Master Thesis, (pp. 1-121). Atatürk University, Natural and Applied Sciences Institue, Erzurum.
  • Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., ... & Whitman, W. B. (2011). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes (Vol. 3). Springer Science & Business Media.
  • Wang, J., Bai, Y., Yang, P., Shi, P., Luo, H., Meng, K., ... & Yao, B. (2010). A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World Journal of Microbiology and Biotechnology, 26(5), 917-924.
  • Yavuz, E., Gunes, H., Harsa, S., & Yenidunya, A. F. (2004). Identification of extracellular enzyme producing thermophilic bacilli from Balcova (Agamemnon) geothermal site by ITS rDNA RFLP. Journal of Applied Microbiology, 97(4), 810-817.
  • Yin, L., Swanson, B., An, J., M. Hacker, B., Silverman, G. A., Dale, B. A., & Chung, W. O. (2010). Differential effects of periopathogens on host protease inhibitors SLPI, elafin, SCCA1, and SCCA2. Journal of Oral Microbiology, 2(1), 5070.
There are 38 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Widad Hassan Jarwais Jaf 0000-0002-2608-0964

Emre Erez 0000-0002-4944-365X

Metin Ertaş 0000-0003-3537-6078

Publication Date August 30, 2022
Submission Date March 28, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Jarwais Jaf, W. H., Erez, E., & Ertaş, M. (2022). Determination of extracellular hydrolytic enzyme capabilities of some Anoxybacillus isolated from hot spring environments. Frontiers in Life Sciences and Related Technologies, 3(2), 56-61. https://doi.org/10.51753/flsrt.1094629

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.