Research Article
BibTex RIS Cite

Determination of antioxidant, antimicrobial activities, total phenolic and flavonoid contents of Allium rumelicum, Jurinea kilaea and Peucedanum obtusifolium

Year 2023, Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons, 1 - 8, 31.12.2023
https://doi.org/10.51753/flsrt.1365203

Abstract

A microwave-assisted extraction (MAE) process for polyphenols from Allium rumelicum Kocyigit & Ozhatay, Jurinea kilaea Azn. and Peucedanum obtusifolium Sibth. & Sm. was used. This research examined the methanolic extracts made from these three species’ antioxidant, antimicrobial, total phenolic, and flavonoid contents. By using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method (DPPH), ABTS/Persulfate, and Cupric reducing antioxidant capacity (CUPRAC) methods, the total antioxidant activities and capacities were examined. Additionally, the Folin-Ciocalteu and AlCl3/KAc techniques were used to calculate the total phenolic and flavonoid contents. To ascertain the antibacterial capabilities of plants, the disc diffusion method was applied. The J. kilaea showed the greatest total antioxidant capacity/activity levels when measured using the CUPRAC and ABTS/Persulfate techniques. A. rumelicum was found to have the highest quercetin concentration, while P. obtusifolium had the lowest. In J. kilaea, the gallic acid concentration was highest. The highest antimicrobial activity values were obtained in P. obtusifolium.

Supporting Institution

Tekirdağ Namık Kemal University

Project Number

NKUBAP.00.YL.19.226

References

  • Ayad, R., Cakmak, Y.S, Ozusaglam, M.A., Medjroubi, K., & Akkal, S. (2017). In vitro antioxidant and antimicrobial activities of aerial parts of Algerian Jurinea humilis DC (Asteraceae). Tropical Journal of Pharmaceutical Research December, 16(12), 2903-2909.
  • Al-Hashimi, A. G. (2012). Antioxidant and antibacterial activities of Hibiscus sabdariffa L. extracts. African Journal of Food Science, 6(21), 506–511.
  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry, 51(2), 138-149.
  • Bener, M., Şen, F.B., & Apak, R. (2018). Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta, 187, 148-155.
  • Bener, M. (2019). Modeling and optimizing microwave-assisted extraction of antioxidants from Thymbra spicata L. and characterization of their phenolic constituents. Food Science and Biotechnology, 28(6), 1733-1745.
  • Celik, E.S., Ozyurek, M., & Guclu, K. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulfate and FRAP methods. Talanta, 81, 1300-1309.
  • Chamberlain, D.F. (1972). Peucedanum L. in Davis, P.H. (ed.) Flora of Turkey and the East Eagean Islands vol4: 477. Edinburg Un. Press. Edinburg.
  • Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10(3), 178-182.
  • Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents, 26(5), 343-356.
  • Danin, A., & Davis, P. H. (1975). Jurinea Cass. İn Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands. Vol 5: 434. Edinburg Un. Press. Edinburg.
  • Destandau, E., & Michel, T. (2022). Microwave-assisted extraction. In Natural Product Extraction (pp. 144-201).
  • Dikdik, K., Dwipa, A., Leny, H., &Dadan, S. (2021). Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules, 26(23), 7175-7202.
  • Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2023). Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction. Applied Sciences, 13(4), 2740.
  • Hannan, A., Humayun, T., Hussain, M.B., Yasir, M., Sikandar, S. (2010). In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholera. J Ayub Med Coll Abbottabad, 22(2),160-163.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agriculture and Food Chemistry, 53, 4303-4310.
  • Hisamoto, M., Kikuzaki, H., Ohigashi, H., & Nakatani, N. (2003). Antioxidant Compounds from the Leaves of Peucedanum japonicum Thunb, Journal of Agricultural Food Chemistry, 51,5255-5261.
  • Karahan, F., Ozyigit, I. I., Yalcin, I. E., Hocaoglu-Ozyigit, A., Erkencioglu, B. N., & Ilcim, A. (2023). Concentrations of plant mineral nutrients and potentially toxic elements in some medicinal plants in the Asteraceae, Fabaceae, and Lamiaceae families from Southern Türkiye: insights into health implications. Spectroscopy Letters, 56(2), 103-128.
  • Kim, M., Seo, K. S., & Yun, K. W. (2018). Antioxidant activity of Saposhnikovia divaricata, Peucedanum japonicum, and Glehnia littoralis. Indian Journal Pharmaceutical Sciences, 80(3), 560-565.
  • Kocyigit, M., & Ozhatay F. N. (2010). A contribution to the genus Allium L. (Sect. Codonoprasum) in Turkey. Turkish Journal of Biology, 34(5), 391-395.
  • Lasunon, P., & Sengkhamparn, N. (2022). Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 27(4), 1157.
  • Matejic, J. S., Dzamic, M. A., Ciric, A. D., Krivosej, Z., Ranđelović, L. N., & Marin, P. D. (2013). Antioxidant and antimicrobial activities of extracts of four peucedanum L. species. Digest Journal of Nanomaterials and Biostructures, 8(2), 655-665.
  • Movehedian, A., Zolfaghari, B., & Mirshekari, M. (2016). Antioxidant effects of hydroalcoholic and polyphenolic extracts of Peucedanum pastinacifolium. Research in Pharmaceutical Sciences, 11(5), 405-411.
  • Naseer, A. S., Muhammad, R. K., Kiran, N., & Mubarak, A. K. (2014). Antioxidant potential, DNA protection and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. Journal of Biomedicine and Biotechnology, PMC4058516.
  • NCCLC. (1997). National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests, 6th Ed, Approved Standard M2–A6. Wayne PA: NCCLS.
  • Nencini, C., Menchiari, A., Franchi, G. G., & Micheli, L. (2011). In vitro Antioxidant Activity of Aged Extracts of some Italian Allium Species. Plant Foods for Human Nutrition, 66, 11-16.
  • Onyeoziri, U. P., Romanus, E. N., & Onyekachukwu, U. I. (2016). Assessment of antioxidant capacities and phenolic contents of nigerian cultivars of onions (Allium cepa L) and garlic (Allium sativum L), Pak J Pharm Sci., 29(4),1183-1188.
  • Ozhatay, N., Kocyiğit, M., & Akalın, E. (2010). Allium rumelicum sect. Codonoprasum a new species from European Turkey. Phytologia Balcanica, 16, 355-359.
  • Ozturk, H., Kolak, U., & Meric, C. (2011). Antioxidant, anticholinesterase and antibacterial activities of Jurinea consanguinea DC. Records of Natural Products, 5(1), 43-51.
  • Parvu, A. E., Parvu, M., Vlase, L., Miclea, P., Mot, A. C., & Silaghi-Dumitrescu, R. (2014). Anti-inflammatory effects of Allium schoenoprasum L. leaves. J Physiol Pharmacol, 65(2), 309-315.
  • Prior, R. L., Wu, X., & Karen, S. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. Journal of Agriculture and Food Chemistry, 53, 4290-4302.
  • Sagar, N. A., & Pareek, S. (2020). Antimicrobial assessment of polyphenolic extracts from onion (Allium cepa L.) skin of fifteen cultivars by sonication-assisted extraction method. Heliyon, 6(11), e05478.
  • Sagar, B.K., & Singh, R.P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422.
  • Santas, J., Almajano, M.P., & Rosa Carbo, R. (2010). Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. International Journal of Food Science and Technology, 45, 403–409.
  • Sharma, K. K., Sharma, S. P. (1976). Effect of onion on blood cholesterol, fibrinogen and fibrinolytic activity in normal subjects. Indian Journal of Pharmacology, 8, 232-233.
  • Sivropoulou, A., Kokkini, S., Lanaras, T., & Arsenakis, M. (1995). Antimicrobial activity of mint essential oils. Journal of Agricultural and Food Chemistry, 43(9), 2384-2388.
  • Skerget, M., Majhenič, L., Bezjak, M., & Knez, Ž. (2009). Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L) skin and edible part extracts. Chemical and Biochemical Engineering Quarterly, 23(4), 435-444.
  • Solaberrieta, I., Mellinas, C., Jiménez, A., & Garrigós, M. C. (2022). Recovery of antioxidants from tomato seed industrial wastes by microwave-assisted and ultrasound-assisted extraction. Foods, 11(19), 3068.
  • Xiao, J. (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance?. Critical reviews in food science and nutrition, 57(9), 1874-1905.
  • Vellutini, M., Baldovini, N., de Rocca Serra, D., Tomi, F., & Casanova, J. (2005). β-Cyclolavandulyl and β-isocyclolavandulyl esters from Peucedanum paniculatum L., an endemic species to Corsica. Phytochemistry, 66(16), 1956-1962.
  • Viera, V. B., Piovesan, N., Rodrigues, J. B., de O Mello, R., Prestes, R. C., Dos Santos, R. C. V., ... & Kubota, E. H. (2017). Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin (Allium cepa L.). International Food Research Journal, 24(3), 990.
  • Tepe, B., Akpulat, H. A., & Sokmen, M. (2011). Evaluation of the chemical composition and antioxidant activity of the essential oils of Peucedanum longifolium (Waldst. & Kit.) and P. palimbioides (Boiss.). Record of Natural Products, 5(2), 108-116.
  • Tomasi, I. T., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452.
  • Tran, N. T. K., Nguyen, V. B., Van Tran, T., & Nguyen, T. T. T. (2023). Microwave-assisted extraction of pectin from jackfruit rags: Optimization, physicochemical properties and antibacterial activities. Food Chemistry, 418, 135807.
  • Woisky, R., & Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal Agricultural Research, 37, 99-105.
  • WHO. (1999). World Health Organization. World Health Organization library cataloging in publication data. 1, 5-32.
  • Zayed, A., Finkelmeier, D., Hahn, T., Rebers, L., Shanmugam, A., Burger-Kentischer, A., & Ulber, R. (2023). Characterization and cytotoxic activity of microwave-assisted extracted crude fucoidans from different brown seaweeds. Marine Drugs, 21(1), 48.
Year 2023, Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons, 1 - 8, 31.12.2023
https://doi.org/10.51753/flsrt.1365203

Abstract

Project Number

NKUBAP.00.YL.19.226

References

  • Ayad, R., Cakmak, Y.S, Ozusaglam, M.A., Medjroubi, K., & Akkal, S. (2017). In vitro antioxidant and antimicrobial activities of aerial parts of Algerian Jurinea humilis DC (Asteraceae). Tropical Journal of Pharmaceutical Research December, 16(12), 2903-2909.
  • Al-Hashimi, A. G. (2012). Antioxidant and antibacterial activities of Hibiscus sabdariffa L. extracts. African Journal of Food Science, 6(21), 506–511.
  • Apak, R., Guclu, K., Ozyurek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Bagade, S. B., & Patil, M. (2021). Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Critical Reviews in Analytical Chemistry, 51(2), 138-149.
  • Bener, M., Şen, F.B., & Apak, R. (2018). Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta, 187, 148-155.
  • Bener, M. (2019). Modeling and optimizing microwave-assisted extraction of antioxidants from Thymbra spicata L. and characterization of their phenolic constituents. Food Science and Biotechnology, 28(6), 1733-1745.
  • Celik, E.S., Ozyurek, M., & Guclu, K. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulfate and FRAP methods. Talanta, 81, 1300-1309.
  • Chamberlain, D.F. (1972). Peucedanum L. in Davis, P.H. (ed.) Flora of Turkey and the East Eagean Islands vol4: 477. Edinburg Un. Press. Edinburg.
  • Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10(3), 178-182.
  • Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents, 26(5), 343-356.
  • Danin, A., & Davis, P. H. (1975). Jurinea Cass. İn Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands. Vol 5: 434. Edinburg Un. Press. Edinburg.
  • Destandau, E., & Michel, T. (2022). Microwave-assisted extraction. In Natural Product Extraction (pp. 144-201).
  • Dikdik, K., Dwipa, A., Leny, H., &Dadan, S. (2021). Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules, 26(23), 7175-7202.
  • Georgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2023). Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction. Applied Sciences, 13(4), 2740.
  • Hannan, A., Humayun, T., Hussain, M.B., Yasir, M., Sikandar, S. (2010). In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of Vibrio cholera. J Ayub Med Coll Abbottabad, 22(2),160-163.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agriculture and Food Chemistry, 53, 4303-4310.
  • Hisamoto, M., Kikuzaki, H., Ohigashi, H., & Nakatani, N. (2003). Antioxidant Compounds from the Leaves of Peucedanum japonicum Thunb, Journal of Agricultural Food Chemistry, 51,5255-5261.
  • Karahan, F., Ozyigit, I. I., Yalcin, I. E., Hocaoglu-Ozyigit, A., Erkencioglu, B. N., & Ilcim, A. (2023). Concentrations of plant mineral nutrients and potentially toxic elements in some medicinal plants in the Asteraceae, Fabaceae, and Lamiaceae families from Southern Türkiye: insights into health implications. Spectroscopy Letters, 56(2), 103-128.
  • Kim, M., Seo, K. S., & Yun, K. W. (2018). Antioxidant activity of Saposhnikovia divaricata, Peucedanum japonicum, and Glehnia littoralis. Indian Journal Pharmaceutical Sciences, 80(3), 560-565.
  • Kocyigit, M., & Ozhatay F. N. (2010). A contribution to the genus Allium L. (Sect. Codonoprasum) in Turkey. Turkish Journal of Biology, 34(5), 391-395.
  • Lasunon, P., & Sengkhamparn, N. (2022). Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 27(4), 1157.
  • Matejic, J. S., Dzamic, M. A., Ciric, A. D., Krivosej, Z., Ranđelović, L. N., & Marin, P. D. (2013). Antioxidant and antimicrobial activities of extracts of four peucedanum L. species. Digest Journal of Nanomaterials and Biostructures, 8(2), 655-665.
  • Movehedian, A., Zolfaghari, B., & Mirshekari, M. (2016). Antioxidant effects of hydroalcoholic and polyphenolic extracts of Peucedanum pastinacifolium. Research in Pharmaceutical Sciences, 11(5), 405-411.
  • Naseer, A. S., Muhammad, R. K., Kiran, N., & Mubarak, A. K. (2014). Antioxidant potential, DNA protection and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. Journal of Biomedicine and Biotechnology, PMC4058516.
  • NCCLC. (1997). National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests, 6th Ed, Approved Standard M2–A6. Wayne PA: NCCLS.
  • Nencini, C., Menchiari, A., Franchi, G. G., & Micheli, L. (2011). In vitro Antioxidant Activity of Aged Extracts of some Italian Allium Species. Plant Foods for Human Nutrition, 66, 11-16.
  • Onyeoziri, U. P., Romanus, E. N., & Onyekachukwu, U. I. (2016). Assessment of antioxidant capacities and phenolic contents of nigerian cultivars of onions (Allium cepa L) and garlic (Allium sativum L), Pak J Pharm Sci., 29(4),1183-1188.
  • Ozhatay, N., Kocyiğit, M., & Akalın, E. (2010). Allium rumelicum sect. Codonoprasum a new species from European Turkey. Phytologia Balcanica, 16, 355-359.
  • Ozturk, H., Kolak, U., & Meric, C. (2011). Antioxidant, anticholinesterase and antibacterial activities of Jurinea consanguinea DC. Records of Natural Products, 5(1), 43-51.
  • Parvu, A. E., Parvu, M., Vlase, L., Miclea, P., Mot, A. C., & Silaghi-Dumitrescu, R. (2014). Anti-inflammatory effects of Allium schoenoprasum L. leaves. J Physiol Pharmacol, 65(2), 309-315.
  • Prior, R. L., Wu, X., & Karen, S. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. Journal of Agriculture and Food Chemistry, 53, 4290-4302.
  • Sagar, N. A., & Pareek, S. (2020). Antimicrobial assessment of polyphenolic extracts from onion (Allium cepa L.) skin of fifteen cultivars by sonication-assisted extraction method. Heliyon, 6(11), e05478.
  • Sagar, B.K., & Singh, R.P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422.
  • Santas, J., Almajano, M.P., & Rosa Carbo, R. (2010). Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. International Journal of Food Science and Technology, 45, 403–409.
  • Sharma, K. K., Sharma, S. P. (1976). Effect of onion on blood cholesterol, fibrinogen and fibrinolytic activity in normal subjects. Indian Journal of Pharmacology, 8, 232-233.
  • Sivropoulou, A., Kokkini, S., Lanaras, T., & Arsenakis, M. (1995). Antimicrobial activity of mint essential oils. Journal of Agricultural and Food Chemistry, 43(9), 2384-2388.
  • Skerget, M., Majhenič, L., Bezjak, M., & Knez, Ž. (2009). Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L) skin and edible part extracts. Chemical and Biochemical Engineering Quarterly, 23(4), 435-444.
  • Solaberrieta, I., Mellinas, C., Jiménez, A., & Garrigós, M. C. (2022). Recovery of antioxidants from tomato seed industrial wastes by microwave-assisted and ultrasound-assisted extraction. Foods, 11(19), 3068.
  • Xiao, J. (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance?. Critical reviews in food science and nutrition, 57(9), 1874-1905.
  • Vellutini, M., Baldovini, N., de Rocca Serra, D., Tomi, F., & Casanova, J. (2005). β-Cyclolavandulyl and β-isocyclolavandulyl esters from Peucedanum paniculatum L., an endemic species to Corsica. Phytochemistry, 66(16), 1956-1962.
  • Viera, V. B., Piovesan, N., Rodrigues, J. B., de O Mello, R., Prestes, R. C., Dos Santos, R. C. V., ... & Kubota, E. H. (2017). Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin (Allium cepa L.). International Food Research Journal, 24(3), 990.
  • Tepe, B., Akpulat, H. A., & Sokmen, M. (2011). Evaluation of the chemical composition and antioxidant activity of the essential oils of Peucedanum longifolium (Waldst. & Kit.) and P. palimbioides (Boiss.). Record of Natural Products, 5(2), 108-116.
  • Tomasi, I. T., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452.
  • Tran, N. T. K., Nguyen, V. B., Van Tran, T., & Nguyen, T. T. T. (2023). Microwave-assisted extraction of pectin from jackfruit rags: Optimization, physicochemical properties and antibacterial activities. Food Chemistry, 418, 135807.
  • Woisky, R., & Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal Agricultural Research, 37, 99-105.
  • WHO. (1999). World Health Organization. World Health Organization library cataloging in publication data. 1, 5-32.
  • Zayed, A., Finkelmeier, D., Hahn, T., Rebers, L., Shanmugam, A., Burger-Kentischer, A., & Ulber, R. (2023). Characterization and cytotoxic activity of microwave-assisted extracted crude fucoidans from different brown seaweeds. Marine Drugs, 21(1), 48.
There are 47 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Bioassays
Journal Section Research Articles
Authors

Ayça Karasakal 0000-0003-2759-4411

Orhan Kılıç 0000-0002-5015-7669

Nazan Tokatlı Demirok 0000-0003-1936-9337

Evren Cabi 0000-0002-7706-5801

Project Number NKUBAP.00.YL.19.226
Publication Date December 31, 2023
Submission Date September 23, 2023
Published in Issue Year 2023 Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons

Cite

APA Karasakal, A., Kılıç, O., Tokatlı Demirok, N., Cabi, E. (2023). Determination of antioxidant, antimicrobial activities, total phenolic and flavonoid contents of Allium rumelicum, Jurinea kilaea and Peucedanum obtusifolium. Frontiers in Life Sciences and Related Technologies1-8. https://doi.org/10.51753/flsrt.1365203

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.