Research Article
BibTex RIS Cite

Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method

Year 2024, , 185 - 203, 12.06.2024
https://doi.org/10.62520/fujece.1453248

Abstract

This study investigated the effect of the response surface method (RSM) on heat sinks designed in block types and using various fluids. The RSM method was applied to the data obtained from heat sinks designed in block type placed in both vertical and horizontal directions using water, mono, nanofluids, and hybrid nanofluids. The data were collected under five different pressure boundary conditions and applied to 144 data sets. The Box-Behnken method was used to analyze the design parameters and derive equations for seven different parameters: density, viscosity, specific heat, thermal conductivity, block thickness, block distances, and inlet pressure boundary conditions. The equations were used to determine the average CPU temperature, thermal resistance, and Performance Evaluation Criteria (PEC). The findings show that the R2 values for thermal resistance (Rth), average CPU temperature (Tm), and performance evaluation criteria (PEC) for flat arrangements are 99.21%, 99.21%, and 99.37%, respectively. The R2 values for the vertically designed geometries are 97.66%, 97.66%, and 98.45%, indicating a strong correlation between the results obtained from FLUENT and the ANOVA statistical results. The linear, square, and cubic effects of each variable had a significant impact on each solution. The study concluded that the RSM method has a significant effect on heat sinks with higher R2 values in horizontal arrangements and a higher distance between blocks. Another important result showed that increasing the block thickness also has a significant effect on Rth and Tm, homogenizing the temperature distribution while increasing the cooling capacity.

References

  • J. Ajayan, D. Nirmal, S. Tayal, S. Bhattacharya, L. Arivazhagan, A.S. Ausgustine, P. Murugapandiyann and D. Ajitha, “Nanosheet field effect transistors-A next generation device to keep Moore’s law alive: An intensive study”, Microel. Jour., vol. 114, p. 105141, Aug. 2021.
  • A. Matallana, E. Ibarra, I. Lopez, J. Andreu, J. I. Garate, X. Jorda and J. Rebollo, “Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects,” Renew. and Sust. Ener. Reviews, vol. 113, p. 109264, Oct. 2019.
  • R. R. L, P. Jayaramu, S. Gedupudi, and S. K. Das, “Experimental investigation of the influence of boiling-induced ageing on high heat flux flow boiling in a copper microchannel,” International Journal of Heat and Mass Transfer, vol. 181, p. 121862, Dec. 2021.
  • Gholami,A. and Bahrami, M., “Thermal spreading resistance inside anisotropic plates with arbitrarily located hotspots”.
  • K.-S. Yang, C.-H. Chung, C.-W. Tu, C.-C. Wong, T.-Y. Yang, and M.-T. Lee, “Thermal spreading resistance characteristics of a high power light emitting diode module,” Appl. Ther.Eng., vol. 70, no. 1, pp. 361–368, Sep. 2014.
  • A. F. Al-Neama, N. Kapur, J. Summers, and H. M. Thompson, “Thermal management of GaN HEMT devices using serpentine minichannel heat sinks,” Appl. Ther. Eng., vol. 140, pp. 622–636, Jul. 2018.
  • H.-C. Chiu, R.-H. Hsieh, K. Wang, J.-H. Jang, and C.-R. Yu, “The heat transfer characteristics of liquid cooling heat sink with micro pin fins,” Inter. Commun.in Heat and Mass Transfer, vol. 86, pp. 174–180, Aug. 2017.
  • H.-C. Chiu, M.-J. Youh, R.-H. Hsieh, J.-H. Jang, and B. Kumar, “Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement,” Case Stud.in Ther. Engi., vol. 44, p. 102853, Apr. 2023.
  • A. Shahsavar, M. Shahmohammadi, and I. Baniasad Askari, “The effect of inlet/outlet number and arrangement on hydrothermal behavior and entropy generation of the laminar water flow in a pin-fin heat sink,” Inter. Commun. in Heat and Mass Transfer, vol. 127, p. 105500, Oct. 2021.
  • A. Shahsavar, M. Shahmohammadi, and I. B. Askari, “CFD simulation of the impact of tip clearance on the hydrothermal performance and entropy generation of a water-cooled pin-fin heat sink,” Intern. Commun. in Heat and Mass Transfer, vol. 126, p. 105400, Jul. 2021.
  • R. Fattahi and M. Saidi, “Numerical investigation of curved shape fins height effect on heat transfer and flow characteristics in open microchannel heat sink,” Inter.Jour. of Thermal Sci., vol. 185, p. 108060, Mar. 2023.
  • Y. Xia, L. Chen, J. Luo, and W. Tao, “Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization,” Appl. Ener., vol. 330, p. 120335, Jan. 2023.
  • O. A. Ismail, A. M. Ali, M. A. Hassan, and O. Gamea, “Geometric optimization of pin fins for enhanced cooling in a microchannel heat sink,” Intern. Jour.of Ther., Sci., vol. 190, p. 108321, Aug. 2023.
  • F. Koca and T. B. Güder, “Numerical investigation of CPU cooling with micro-pin–fin heat sink in different shapes,” Eur. Phys. J. Plus, vol. 137, no. 11, p. 1276, Nov. 2022.
  • R. B. Gurav, P. Purohit, P. K. Tamkhade, and S. P. Nalavade, “Computational and analytical study on CPU heat sink cooling by single and double stack air-foil micro pin fins,” Mater. Today: Procee., p. S2214785323011719, Mar. 2023.
  • F. N. Ghadhban and H. M. Jaffal, “Numerical and experimental thermohydraulic performance evaluation of multi-minichannel heat sinks considering channel structure modification,” Inter. Commun.s in Heat and Mass Transfer, vol. 145, p. 106847, Jun. 2023.
  • A. J. Obaid and V. M. Hameed, “An experimental and numerical comparison study on a heat sink thermal performance with new fin configuration under mixed convective conditions,” South African Jour. of Chem. Eng., vol. 44, pp. 81–88, Apr. 2023.
  • M. Fathi, M. M. Heyhat, M. Zabetian Targhi, and S. Bigham, “Bifurcated divergent microchannel heat sinks for enhanced micro-electronic cooling,” Inter. Commun. in Heat and Mass Transfer, vol. 146, p. 106868, Jul. 2023.
  • G. Sung, D.-Y. Na, and S.-J. Yook, “Enhancement of the cooling performance of a pin fin heat sink based on the chimney effect using aluminum tape,” Inter. Jour. of Heat and Mass Transfer, vol. 201, p. 123613, Feb. 2023.
  • M. W. Uddin and N. S. Sifat, “Comparative study on hydraulic and thermal characteristics of minichannel heat sink with different secondary channels in parallel and counter flow directions,” Inter. Jour.of Thermof., vol. 17, p. 100296, Feb. 2023.
  • V. Arumuru, K. Rajput, R. Nandan, P. Rath, and M. Das, “A novel synthetic jet based heat sink with PCM filled cylindrical fins for efficient electronic cooling,” Jour. of Ener. Stor., vol. 58, p. 106376, Feb. 2023.
  • T. T. Göksu and F. Yılmaz, “Numerical comparison study on heat transfer enhancement of different cross-section wire coils insert with varying pitches in a duct,” Jour. of Ther. Eng., vol. 7, no. 7, Art. no. 7, Nov. 2021.
  • İ. H. Yılmaz and T. T. Göksu, “Enhancement of heat transfer using twisted tape insert in a plain tube,” Bitlis Eren Üni. Fen Bilim. Derg., vol. 8, no. 1, Art. no. 1, Mar. 2019.
  • Kavitha. C, M. P.C., and A. K. C.M, “Numerical study on the performance of Al2O3/water nanofluids as a coolant in the fin channel heat sink for an electronic device cooling,” Mater. Today: Procee., p. S221478532300901X, Mar. 2023.
  • Choi, S. U. S., Singer, D. A., and Wang, H. P., “Developments and applications of non-Newtonian flows,” vol. 66, no. 99–105, 1995.
  • Chol, S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME, vol. 231, 1995.
  • Xinyu, W., Huiying, W., and Ping, C., “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannel,” Jour.of Micromec. and Microeng., vol. 19, p. 105020.
  • S. S. Ghadikolaei, S. Siahchehrehghadikolaei, M. Gholinia, and M. Rahimi, “A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling,” Ther. Sci. and Eng.Progress, vol. 37, p. 101604, Jan. 2023.
  • M. Khoshvaght-Aliabadi, P. Ghodrati, H. Mortazavi, and Y. T. Kang, “Numerical analysis of heat transfer and flow characteristics of supercritical CO2-cooled wavy mini-channel heat sinks,” App. Ther. Eng., vol. 226, p. 120307, May 2023.
  • M. D. Massoudi and M. B. Ben Hamida, “Combined impacts of square fins fitted wavy wings and micropolar magnetized-radiative nanofluid on the heat sink performance,” Journal of Mag. and Mag. Mater., vol. 574, p. 170655, May 2023.
  • H. R. Seyf and M. Feizbakhshi, “Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks,” Inter.Jour.of Ther. Sci., vol. 58, pp. 168–179, Aug. 2012.
  • T. Ambreen, A. Saleem, and C. W. Park, “Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections,” App. Ther.Eng., vol. 158, p. 113781, Jul. 2019.
  • W. Cai et al., “Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects,” App. Ther. Eng., vol. 199, p. 117593, Nov. 2021.
  • M. Yasir, M. Khan, A. S. Alqahtani, and M. Y. Malik, “Numerical study of axisymmetric hybrid nanofluid MgO-Ag/H2O flow with non-uniform heat source/sink,” Alex. Eng. Jour., vol. 75, pp. 439–446, Jul. 2023.
  • S. Mukherjee, S. Wciślik, V. Khadanga, and P. C. Mishra, “Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink,” Case Stud. in Ther. Eng., vol. 49, p. 103241, Sep. 2023.
  • O. Ozbalci, A. Dogan, and M. Asilturk, “Performance of discretely mounted metal foam heat sinks in a channel with nanofluid,” App. Ther. Eng., vol. 235, p. 121375, Nov. 2023.
  • I. Karaaslan and T. Menlik, “Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid,” Solar Ener., vol. 224, pp. 1260–1270, Aug. 2021.
  • C. J. Ho, J.-K. Peng, T.-F. Yang, S. Rashidi, and W.-M. Yan, “On the assessment of the thermal performance of microchannel heat sink with nanofluid,” Inter. Jour. of Heat and Mass Transfer, vol. 201, p. 123572, Feb. 2023.
  • G. Sriharan, S. Harikrishnan, and H. F. Oztop, “Performance improvement of the mini hexagonal tube heat sink using nanofluids,” Ther. Sci. and Eng. Prog., vol. 34, p. 101390, Sep. 2022.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study,” Jour. of Mol. Liq., vol. 248, pp. 264–270, Dec. 2017.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink,” Jour. of Mol. Liq., vol. 230, pp. 550–556, Mar. 2017.
  • M. Bahiraei, S. Heshmatian, and M. Keshavarzi, “Multi-criterion optimization of thermohydraulic performance of a mini pin fin heat sink operated with ecofriendly graphene nanoplatelets nanofluid considering geometrical characteristics,” Jour. of Mol. Liq., vol. 276, pp. 653–666, Feb. 2019.
  • W. Guo, G. Li, Y. Zheng, and C. Dong, “Numerical study of nanofluids thermal and hydraulic characteristics considering Brownian motion effect in micro fin heat sink,” Jour. of Mol. Liq., vol. 264, pp. 38–47, Aug. 2018.
  • M. Bahiraei, M. Jamshidmofid, and M. Goodarzi, “Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs,” Jour. of Mol. Liq., vol. 273, pp. 88–98, Jan. 2019.
  • N. Abbas, W. Shatanawi, and K. Abodayeh, “Computational Analysis of MHD Nonlinear Radiation Casson Hybrid Nanofluid Flow at Vertical Stretching Sheet,” Symmetry, vol. 14, no. 7, Art. no. 7, Jul. 2022.
  • B. Cabir and A. Yakın, “Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines,” Jour. of the Ener. Inst., vol. 112, p. 101483, Feb. 2024.
  • M. Yetkin, Ö. F. Taş, and E. Sayın, “Comparison of equivalent earthquake load method for TEC-2007 and TBEC-2018: Adıyaman province example,” Firat Univ. Jour.of Exper. and Comp. Eng, vol. 2, no. 2, Art. no. 2, Jun. 2023.
  • T. T. Göksu, “Investigation of pin and perforated heatsink cooling efficiency and temperature distribution,” J Therm Anal Calorim, Apr. 2024.
  • J. Zhou, M. Hatami, D. Song, and D. Jing, “Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods,” Inter. Jour. of Heat and Mass Transfer, vol. 103, pp. 715–724, Dec. 2016.
  • M. Rahimi-Gorji, O. Pourmehran, M. Hatami, and D. D. Ganji, “Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis,” Eur. Phys. J. Plus, vol. 130, no. 2, p. 22, Feb. 2015.
  • M. Shanmugam and L. Sirisha Maganti, “Multi-objective optimization of parallel microchannel heat sink with inlet/outlet U, I, Z type manifold configuration by RSM and NSGA-II,” Inter. Jour.of Heat and Mass Transfer, vol. 201, p. 123641, Feb. 2023.
  • F. Pourfattah, M. F. Kheryrabadi, and L.-P. Wang, “Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink,” J Braz. Soc. Mech. Sci. Eng., vol. 45, no. 3, p. 178, Mar. 2023.
  • T. T. Göksu, “Enhancing cooling efficiency: Innovative geometric designs and mono-hybrid nanofluid applications in heat sinks,” Case Stud. in Ther. Eng., vol. 55, p. 104096, Mar. 2024.
  • S. Lineykin and S. Ben-Yaakov, “Mod. and Anal. of Therm. Modules,” IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 505–512, Mar. 2007.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” International Journal of Heat and Mass Transfer, vol. 24, no. 4, pp. 715–726, Apr. 1981.
  • K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, “An Experimental Investigation on Aqueous Fe–CuO Hybrid Nanofluid Usage in a Plain Heat Pipe,” Int J Thermophys, vol. 41, no. 9, p. 135, Sep. 2020.

Isı Emicilerin Geometrik Parametrelerinin ve Akışkan Özelliklerinin Soğutma Üzerindeki Etkisinin RSM Yöntemi İle İncelenmesi

Year 2024, , 185 - 203, 12.06.2024
https://doi.org/10.62520/fujece.1453248

Abstract

Bu çalışma, blok tiplerinde ve çeşitli akışkanlar kullanılarak tasarlanan ısı alıcıları üzerinde yanıt yüzey yöntemi (RSM) etkisini araştırmaktadır. RSM yöntemi, su, mono-nanoakışkanlar ve hibrit nanoakışkanlar kullanılarak hem dikey hem de yatay yönlerde yerleştirilen blok tipinde tasarlanan ısı emicilerinden elde edilen verilere uygulanmıştır. Veriler beş farklı basınç sınır koşulu altında toplanmış ve 144 veri setine uygulanmıştır. Tasarım parametrelerini analiz etmek ve yedi farklı parametre için denklemler türetmek için Box-Behnken yöntemi kullanılmıştır: yoğunluk, viskozite, özgül ısı, termal iletkenlik, blok kalınlığı, blok mesafeleri ve giriş basıncı sınır koşulları kullanılan parametrelerdir. Denklemler ortalama CPU sıcaklığını, termal direnci ve Performans Değerlendirme Kriterlerini (PEC) belirlemek için kullanılmıştır. Sonuçlar, yatay düzenlemelerde termal direnç (Rth), CPU ortalama sıcaklık (Tm) ve Performans Değerlendirme Kriteri (PEC) için R2 değerlerinin sırasıyla %99,21, %99,21 ve %99,37 olduğunu göstermektedir. Dikey olarak tasarlanan geometrilerdeki R2 değerleri %97,66, %97,66 ve %98,45 olup FLUENT'ten elde edilen sonuçlar ile ANOVA istatistiksel sonuçları arasında güçlü bir korelasyon olduğunu göstermektedir. Her bir değişkenin doğrusal, kare ve kübik etkileri her bir çözümü önemli ölçüde etkilemiştir. Çalışma, RSM yönteminin, yatay düzenlemelerde daha yüksek R2 değerleri ve bloklar arasında daha yüksek mesafe ile ısı alıcıları üzerinde önemli bir etkiye sahip olduğu sonucuna varılmıştır. Bir diğer önemli sonuç ise blok kalınlığının artmasının da Rth ve Tm üzerinde önemli bir etkiye sahip olduğunu göstermiş, soğutma kapasitesini de artırırken sıcaklık dağılımını homojenleştirdiği görülmüştür.

References

  • J. Ajayan, D. Nirmal, S. Tayal, S. Bhattacharya, L. Arivazhagan, A.S. Ausgustine, P. Murugapandiyann and D. Ajitha, “Nanosheet field effect transistors-A next generation device to keep Moore’s law alive: An intensive study”, Microel. Jour., vol. 114, p. 105141, Aug. 2021.
  • A. Matallana, E. Ibarra, I. Lopez, J. Andreu, J. I. Garate, X. Jorda and J. Rebollo, “Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects,” Renew. and Sust. Ener. Reviews, vol. 113, p. 109264, Oct. 2019.
  • R. R. L, P. Jayaramu, S. Gedupudi, and S. K. Das, “Experimental investigation of the influence of boiling-induced ageing on high heat flux flow boiling in a copper microchannel,” International Journal of Heat and Mass Transfer, vol. 181, p. 121862, Dec. 2021.
  • Gholami,A. and Bahrami, M., “Thermal spreading resistance inside anisotropic plates with arbitrarily located hotspots”.
  • K.-S. Yang, C.-H. Chung, C.-W. Tu, C.-C. Wong, T.-Y. Yang, and M.-T. Lee, “Thermal spreading resistance characteristics of a high power light emitting diode module,” Appl. Ther.Eng., vol. 70, no. 1, pp. 361–368, Sep. 2014.
  • A. F. Al-Neama, N. Kapur, J. Summers, and H. M. Thompson, “Thermal management of GaN HEMT devices using serpentine minichannel heat sinks,” Appl. Ther. Eng., vol. 140, pp. 622–636, Jul. 2018.
  • H.-C. Chiu, R.-H. Hsieh, K. Wang, J.-H. Jang, and C.-R. Yu, “The heat transfer characteristics of liquid cooling heat sink with micro pin fins,” Inter. Commun.in Heat and Mass Transfer, vol. 86, pp. 174–180, Aug. 2017.
  • H.-C. Chiu, M.-J. Youh, R.-H. Hsieh, J.-H. Jang, and B. Kumar, “Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement,” Case Stud.in Ther. Engi., vol. 44, p. 102853, Apr. 2023.
  • A. Shahsavar, M. Shahmohammadi, and I. Baniasad Askari, “The effect of inlet/outlet number and arrangement on hydrothermal behavior and entropy generation of the laminar water flow in a pin-fin heat sink,” Inter. Commun. in Heat and Mass Transfer, vol. 127, p. 105500, Oct. 2021.
  • A. Shahsavar, M. Shahmohammadi, and I. B. Askari, “CFD simulation of the impact of tip clearance on the hydrothermal performance and entropy generation of a water-cooled pin-fin heat sink,” Intern. Commun. in Heat and Mass Transfer, vol. 126, p. 105400, Jul. 2021.
  • R. Fattahi and M. Saidi, “Numerical investigation of curved shape fins height effect on heat transfer and flow characteristics in open microchannel heat sink,” Inter.Jour. of Thermal Sci., vol. 185, p. 108060, Mar. 2023.
  • Y. Xia, L. Chen, J. Luo, and W. Tao, “Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization,” Appl. Ener., vol. 330, p. 120335, Jan. 2023.
  • O. A. Ismail, A. M. Ali, M. A. Hassan, and O. Gamea, “Geometric optimization of pin fins for enhanced cooling in a microchannel heat sink,” Intern. Jour.of Ther., Sci., vol. 190, p. 108321, Aug. 2023.
  • F. Koca and T. B. Güder, “Numerical investigation of CPU cooling with micro-pin–fin heat sink in different shapes,” Eur. Phys. J. Plus, vol. 137, no. 11, p. 1276, Nov. 2022.
  • R. B. Gurav, P. Purohit, P. K. Tamkhade, and S. P. Nalavade, “Computational and analytical study on CPU heat sink cooling by single and double stack air-foil micro pin fins,” Mater. Today: Procee., p. S2214785323011719, Mar. 2023.
  • F. N. Ghadhban and H. M. Jaffal, “Numerical and experimental thermohydraulic performance evaluation of multi-minichannel heat sinks considering channel structure modification,” Inter. Commun.s in Heat and Mass Transfer, vol. 145, p. 106847, Jun. 2023.
  • A. J. Obaid and V. M. Hameed, “An experimental and numerical comparison study on a heat sink thermal performance with new fin configuration under mixed convective conditions,” South African Jour. of Chem. Eng., vol. 44, pp. 81–88, Apr. 2023.
  • M. Fathi, M. M. Heyhat, M. Zabetian Targhi, and S. Bigham, “Bifurcated divergent microchannel heat sinks for enhanced micro-electronic cooling,” Inter. Commun. in Heat and Mass Transfer, vol. 146, p. 106868, Jul. 2023.
  • G. Sung, D.-Y. Na, and S.-J. Yook, “Enhancement of the cooling performance of a pin fin heat sink based on the chimney effect using aluminum tape,” Inter. Jour. of Heat and Mass Transfer, vol. 201, p. 123613, Feb. 2023.
  • M. W. Uddin and N. S. Sifat, “Comparative study on hydraulic and thermal characteristics of minichannel heat sink with different secondary channels in parallel and counter flow directions,” Inter. Jour.of Thermof., vol. 17, p. 100296, Feb. 2023.
  • V. Arumuru, K. Rajput, R. Nandan, P. Rath, and M. Das, “A novel synthetic jet based heat sink with PCM filled cylindrical fins for efficient electronic cooling,” Jour. of Ener. Stor., vol. 58, p. 106376, Feb. 2023.
  • T. T. Göksu and F. Yılmaz, “Numerical comparison study on heat transfer enhancement of different cross-section wire coils insert with varying pitches in a duct,” Jour. of Ther. Eng., vol. 7, no. 7, Art. no. 7, Nov. 2021.
  • İ. H. Yılmaz and T. T. Göksu, “Enhancement of heat transfer using twisted tape insert in a plain tube,” Bitlis Eren Üni. Fen Bilim. Derg., vol. 8, no. 1, Art. no. 1, Mar. 2019.
  • Kavitha. C, M. P.C., and A. K. C.M, “Numerical study on the performance of Al2O3/water nanofluids as a coolant in the fin channel heat sink for an electronic device cooling,” Mater. Today: Procee., p. S221478532300901X, Mar. 2023.
  • Choi, S. U. S., Singer, D. A., and Wang, H. P., “Developments and applications of non-Newtonian flows,” vol. 66, no. 99–105, 1995.
  • Chol, S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME, vol. 231, 1995.
  • Xinyu, W., Huiying, W., and Ping, C., “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannel,” Jour.of Micromec. and Microeng., vol. 19, p. 105020.
  • S. S. Ghadikolaei, S. Siahchehrehghadikolaei, M. Gholinia, and M. Rahimi, “A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling,” Ther. Sci. and Eng.Progress, vol. 37, p. 101604, Jan. 2023.
  • M. Khoshvaght-Aliabadi, P. Ghodrati, H. Mortazavi, and Y. T. Kang, “Numerical analysis of heat transfer and flow characteristics of supercritical CO2-cooled wavy mini-channel heat sinks,” App. Ther. Eng., vol. 226, p. 120307, May 2023.
  • M. D. Massoudi and M. B. Ben Hamida, “Combined impacts of square fins fitted wavy wings and micropolar magnetized-radiative nanofluid on the heat sink performance,” Journal of Mag. and Mag. Mater., vol. 574, p. 170655, May 2023.
  • H. R. Seyf and M. Feizbakhshi, “Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks,” Inter.Jour.of Ther. Sci., vol. 58, pp. 168–179, Aug. 2012.
  • T. Ambreen, A. Saleem, and C. W. Park, “Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections,” App. Ther.Eng., vol. 158, p. 113781, Jul. 2019.
  • W. Cai et al., “Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects,” App. Ther. Eng., vol. 199, p. 117593, Nov. 2021.
  • M. Yasir, M. Khan, A. S. Alqahtani, and M. Y. Malik, “Numerical study of axisymmetric hybrid nanofluid MgO-Ag/H2O flow with non-uniform heat source/sink,” Alex. Eng. Jour., vol. 75, pp. 439–446, Jul. 2023.
  • S. Mukherjee, S. Wciślik, V. Khadanga, and P. C. Mishra, “Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink,” Case Stud. in Ther. Eng., vol. 49, p. 103241, Sep. 2023.
  • O. Ozbalci, A. Dogan, and M. Asilturk, “Performance of discretely mounted metal foam heat sinks in a channel with nanofluid,” App. Ther. Eng., vol. 235, p. 121375, Nov. 2023.
  • I. Karaaslan and T. Menlik, “Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid,” Solar Ener., vol. 224, pp. 1260–1270, Aug. 2021.
  • C. J. Ho, J.-K. Peng, T.-F. Yang, S. Rashidi, and W.-M. Yan, “On the assessment of the thermal performance of microchannel heat sink with nanofluid,” Inter. Jour. of Heat and Mass Transfer, vol. 201, p. 123572, Feb. 2023.
  • G. Sriharan, S. Harikrishnan, and H. F. Oztop, “Performance improvement of the mini hexagonal tube heat sink using nanofluids,” Ther. Sci. and Eng. Prog., vol. 34, p. 101390, Sep. 2022.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study,” Jour. of Mol. Liq., vol. 248, pp. 264–270, Dec. 2017.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink,” Jour. of Mol. Liq., vol. 230, pp. 550–556, Mar. 2017.
  • M. Bahiraei, S. Heshmatian, and M. Keshavarzi, “Multi-criterion optimization of thermohydraulic performance of a mini pin fin heat sink operated with ecofriendly graphene nanoplatelets nanofluid considering geometrical characteristics,” Jour. of Mol. Liq., vol. 276, pp. 653–666, Feb. 2019.
  • W. Guo, G. Li, Y. Zheng, and C. Dong, “Numerical study of nanofluids thermal and hydraulic characteristics considering Brownian motion effect in micro fin heat sink,” Jour. of Mol. Liq., vol. 264, pp. 38–47, Aug. 2018.
  • M. Bahiraei, M. Jamshidmofid, and M. Goodarzi, “Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs,” Jour. of Mol. Liq., vol. 273, pp. 88–98, Jan. 2019.
  • N. Abbas, W. Shatanawi, and K. Abodayeh, “Computational Analysis of MHD Nonlinear Radiation Casson Hybrid Nanofluid Flow at Vertical Stretching Sheet,” Symmetry, vol. 14, no. 7, Art. no. 7, Jul. 2022.
  • B. Cabir and A. Yakın, “Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines,” Jour. of the Ener. Inst., vol. 112, p. 101483, Feb. 2024.
  • M. Yetkin, Ö. F. Taş, and E. Sayın, “Comparison of equivalent earthquake load method for TEC-2007 and TBEC-2018: Adıyaman province example,” Firat Univ. Jour.of Exper. and Comp. Eng, vol. 2, no. 2, Art. no. 2, Jun. 2023.
  • T. T. Göksu, “Investigation of pin and perforated heatsink cooling efficiency and temperature distribution,” J Therm Anal Calorim, Apr. 2024.
  • J. Zhou, M. Hatami, D. Song, and D. Jing, “Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods,” Inter. Jour. of Heat and Mass Transfer, vol. 103, pp. 715–724, Dec. 2016.
  • M. Rahimi-Gorji, O. Pourmehran, M. Hatami, and D. D. Ganji, “Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis,” Eur. Phys. J. Plus, vol. 130, no. 2, p. 22, Feb. 2015.
  • M. Shanmugam and L. Sirisha Maganti, “Multi-objective optimization of parallel microchannel heat sink with inlet/outlet U, I, Z type manifold configuration by RSM and NSGA-II,” Inter. Jour.of Heat and Mass Transfer, vol. 201, p. 123641, Feb. 2023.
  • F. Pourfattah, M. F. Kheryrabadi, and L.-P. Wang, “Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink,” J Braz. Soc. Mech. Sci. Eng., vol. 45, no. 3, p. 178, Mar. 2023.
  • T. T. Göksu, “Enhancing cooling efficiency: Innovative geometric designs and mono-hybrid nanofluid applications in heat sinks,” Case Stud. in Ther. Eng., vol. 55, p. 104096, Mar. 2024.
  • S. Lineykin and S. Ben-Yaakov, “Mod. and Anal. of Therm. Modules,” IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 505–512, Mar. 2007.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” International Journal of Heat and Mass Transfer, vol. 24, no. 4, pp. 715–726, Apr. 1981.
  • K. Martin, A. Sözen, E. Çiftçi, and H. M. Ali, “An Experimental Investigation on Aqueous Fe–CuO Hybrid Nanofluid Usage in a Plain Heat Pipe,” Int J Thermophys, vol. 41, no. 9, p. 135, Sep. 2020.
There are 56 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Numerical Methods in Mechanical Engineering
Journal Section Research Articles
Authors

Taha Tuna Göksu 0000-0003-2028-3362

Publication Date June 12, 2024
Submission Date March 15, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024

Cite

APA Göksu, T. T. (2024). Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method. Firat University Journal of Experimental and Computational Engineering, 3(2), 185-203. https://doi.org/10.62520/fujece.1453248
AMA Göksu TT. Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method. FUJECE. June 2024;3(2):185-203. doi:10.62520/fujece.1453248
Chicago Göksu, Taha Tuna. “Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method”. Firat University Journal of Experimental and Computational Engineering 3, no. 2 (June 2024): 185-203. https://doi.org/10.62520/fujece.1453248.
EndNote Göksu TT (June 1, 2024) Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method. Firat University Journal of Experimental and Computational Engineering 3 2 185–203.
IEEE T. T. Göksu, “Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method”, FUJECE, vol. 3, no. 2, pp. 185–203, 2024, doi: 10.62520/fujece.1453248.
ISNAD Göksu, Taha Tuna. “Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method”. Firat University Journal of Experimental and Computational Engineering 3/2 (June 2024), 185-203. https://doi.org/10.62520/fujece.1453248.
JAMA Göksu TT. Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method. FUJECE. 2024;3:185–203.
MLA Göksu, Taha Tuna. “Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method”. Firat University Journal of Experimental and Computational Engineering, vol. 3, no. 2, 2024, pp. 185-03, doi:10.62520/fujece.1453248.
Vancouver Göksu TT. Investigation of The Effect of Geometrical Parameters And Fluid Properties of Heat Sinks on Cooling By RSM Method. FUJECE. 2024;3(2):185-203.