Research Article
BibTex RIS Cite

Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması

Year 2018, Volume: 30 Issue: 1, 303 - 310, 01.03.2018

Abstract

Özellikle taban döşemesi olarak
kullanılan doğal taşların kullanım ömrünü belirleyen en önemli özelliklerinden
birisi aşınma direncidir. Aşınma direncinin belirlenmesi için önerilmiş farklı yöntemler
mevcut olup, bu yöntemler genellikle zaman alıcı ve özel deney cihazlarıyla gerçekleştirilmektedir.
Aşınma direncinin belirlenmesine yönelik olarak son yıllarda Avrupa ülkelerinde
geliştirilmiş ve standartlaştırılmış olan Geniş Disk Aşınma Deneyi (GD) kısa
deney süresi ve pratik kullanım özellikleri ile ülkemizde de yaygınlaşmaya
başlamıştır. Bu deneysel çalışmada, Batı Anadolu’nun değişik bölgelerinden,
inşaat ve yapı sektöründe yaygın olarak kullanılan 11 farklı tür karbonat
kayasının aşınma özellikleri Geniş Disk Aşınma Deneyi ile incelenmiştir. Çalışmanın
ana amacı doğrultusunda incelenen ve traverten, kireçtaşı, dolomit ve mermer
kaya türlerinin aşınma dirençleri ortaya konmuştur. Ayrıca, birim hacim ağırlık
değerleri, görünür porozite değerleri, boyuna dalga hızları (Vp), GD aşınma
değerleri ve tek eksenli sıkışma dayanımı (TSD) değerleri belirlenmiş ve elde
edilen parametreler ile GD değerleri arasındaki ilişkiler incelenerek GD
değerlerinin diğer parametrelerden tahmin edilebilirliği araştırılmıştır. GD
değerleri ile diğer parametreler arasındaki ilişkiler çoklu regresyon analizleri
ile incelenmiş ve GD değerlerinin tahmini için eşitlikler önerilmiştir. 

References

  • 1. EN 14157 (2004). Natural stones - Determination of abrasion resistance. European Standard, 19p. 2. Budinski, K.G., Ives, L.K. (2005). Measuring abrasion resistance with a fixed abrasive loop. Wear, 258, 133–140. 3. Ersoy, A., Büyüksağış, S., Atıcı U. (2005). Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear, 258 (9), 1422–1436. 4. S. Mezlini, S., Kapsa, P., Abry, J.C., Henon, C., Guillemenet J. (2006). Effect of indenter geometry and relationship between abrasive wear and hardness in early stage of repetitive sliding. Wear, 260, 412–421. 5. Yavuz, H., Uğur, İ., Demirdağ, S. (2008). Abrasion resistance of carbonate rocks used in dimension stone industry and correlations between abrasion and rock properties. Int Journal of Rock Mechanics and Mining Sciences, 45, 260 – 267. 6. Sahlin, T., Starzec, K., Stigh, J., Schouenborg, B. (2001). Physical properties and durability of fresh and impregnated limestone and sandstone from central Sweden used for thin stone flooring and cladding. 9th International Congress on Deterioration and Conservation of Stone, 181 – 185. 7. Karaca, Z., Deliormanli, A.H., Elçi, H., Pamukcu, C. (2010). Effect of freeze-thaw process on the abrasion loss value of stones. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1207-1211. 8. Çobanoğlu, İ., Çelik, S.B., Alkaya, D. (2010). Correlation between wide wheel abrasion (capon) and Bohme abrasion test results for some carbonate rocks. Sci Res Essays, 5 (22), 3398-3404. 9. Karaca, Z., Güneş Yılmaz, N., Göktan, R.M. (2012). Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings. Rock Mech Rock Eng, 45, 103–111. 10. Çobanoğlu, İ., Çelik, S. B. (2017). Assessments on the usability of Wide Wheel (Capon) test as reference abrasion test method for building stones. Construction and Building Materials, 151, 319–330. 11. EN 1926 (2006). Natural stone test methods - Determination of uniaxial compressive strength. European Committee for Standardization, 20p. 12. EN 1936 (2006). Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. European Committee for Standardization, 11p. 13. Anon (1979). Classification of rocks and soils for engineering geological mapping part I: Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 364-371. 14. Proceq (2014). Pundit lab/Pundit lab+ ultrasonic instrument operating instructions. Proceq SA, 31p. 15. Yaşar, E., Erdoğan, E. (2004). Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min, 41, 871–875. 16. Fener, M., Kahraman, S., Bilgil, A., Günaydın, O. (2005). A comparative Evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng, 38 (4), 329-343. 17. Sharma, P.K., Singh, T.N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B Eng Geol Environ, 67(1), 17-22. 18. Altındağ, R. (2012). Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. The Southern African Institute of Mining and Metallurgy, 112, 229—237. 19. Karakul., H., Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng, 46, 981-999. 20. Momeni, E., Nazir, R., Armaghani, D.J., Mohamad, E.T. (2015). Prediction of unconfined compressive strength of rocks: a review paper. Jurnal Teknologi, 77(11), 43—50. 21. Selçuk, L., Nar, A. (2015). Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number. Q J Eng Geol Hydroge 49(1), 67-75. 22. Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A., Singh, T.N. (2016). Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement, 88, 202—213. 23. Azimian, A. (2017). Application of statistical methods for predicting uniaxial compressive strength of limestone rocks using nondestructive tests. Acta Geotechnica, 12, 321—333. 24. Marini, P., Bellopede, R., Perino, L., De Regibus, C. (2011). Optimisation of an abrasion resistance test method on natural stones. Bull Eng Geol Environ, 70, 133–138. 25. ISRM (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, ISRM, Compilation arranged by the ISRM Turkish National Group, Ankara, 628p. 26. MacGregor, I.D., Chiu, K.Y. (2000). Porosity and wear resistance in Stone flooring tiles. J Test Eval, 28, 149–54. 27. Kahraman, S., Günaydın O. (2007). Empirical methods to predict the abrasion resistance of rock aggregates. Bull Eng Geol Environ, 66, 449–455. 28. Kahraman, S., Fener, M. (2008). Electrical resistivity measurements to predict abrasion resistance of rock aggregates. Bull Mater Sci, 31(2), 179–184. 29. Yavuz, H., Uğur, İ., Demirdağ, S. (2008). Abrasion resistance of carbonate rocks used in dimension stone industry and correlations between abrasion and rock properties. Int Journal of Rock Mechanics and Mining Sciences, 45, 260 – 267. 30. Yaralı, O. (2016). Kömür Çevre Kayaçları Dayanım Özelliklerinin Cerchar Aşınma İndeksine Olan Etkileri. Yerbilimleri, 37(2), 179-192. 31. Ureel, S., Momayez, M. (2017). Simple Correlations between Rock Abrasion and Other significant Rock Properties for Rock Mass and Intact Quartzite. Open Journal of Civil Engineering,7, 194-207. 32. Çelik, S. B., Çobanoğlu, İ., Atatanır, L. (2014). General material properties of Denizli (SW Turkey) travertines as a building stone. Bull Eng Geol Environ, 73, 825-838.
Year 2018, Volume: 30 Issue: 1, 303 - 310, 01.03.2018

Abstract

References

  • 1. EN 14157 (2004). Natural stones - Determination of abrasion resistance. European Standard, 19p. 2. Budinski, K.G., Ives, L.K. (2005). Measuring abrasion resistance with a fixed abrasive loop. Wear, 258, 133–140. 3. Ersoy, A., Büyüksağış, S., Atıcı U. (2005). Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear, 258 (9), 1422–1436. 4. S. Mezlini, S., Kapsa, P., Abry, J.C., Henon, C., Guillemenet J. (2006). Effect of indenter geometry and relationship between abrasive wear and hardness in early stage of repetitive sliding. Wear, 260, 412–421. 5. Yavuz, H., Uğur, İ., Demirdağ, S. (2008). Abrasion resistance of carbonate rocks used in dimension stone industry and correlations between abrasion and rock properties. Int Journal of Rock Mechanics and Mining Sciences, 45, 260 – 267. 6. Sahlin, T., Starzec, K., Stigh, J., Schouenborg, B. (2001). Physical properties and durability of fresh and impregnated limestone and sandstone from central Sweden used for thin stone flooring and cladding. 9th International Congress on Deterioration and Conservation of Stone, 181 – 185. 7. Karaca, Z., Deliormanli, A.H., Elçi, H., Pamukcu, C. (2010). Effect of freeze-thaw process on the abrasion loss value of stones. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1207-1211. 8. Çobanoğlu, İ., Çelik, S.B., Alkaya, D. (2010). Correlation between wide wheel abrasion (capon) and Bohme abrasion test results for some carbonate rocks. Sci Res Essays, 5 (22), 3398-3404. 9. Karaca, Z., Güneş Yılmaz, N., Göktan, R.M. (2012). Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings. Rock Mech Rock Eng, 45, 103–111. 10. Çobanoğlu, İ., Çelik, S. B. (2017). Assessments on the usability of Wide Wheel (Capon) test as reference abrasion test method for building stones. Construction and Building Materials, 151, 319–330. 11. EN 1926 (2006). Natural stone test methods - Determination of uniaxial compressive strength. European Committee for Standardization, 20p. 12. EN 1936 (2006). Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. European Committee for Standardization, 11p. 13. Anon (1979). Classification of rocks and soils for engineering geological mapping part I: Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 364-371. 14. Proceq (2014). Pundit lab/Pundit lab+ ultrasonic instrument operating instructions. Proceq SA, 31p. 15. Yaşar, E., Erdoğan, E. (2004). Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min, 41, 871–875. 16. Fener, M., Kahraman, S., Bilgil, A., Günaydın, O. (2005). A comparative Evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng, 38 (4), 329-343. 17. Sharma, P.K., Singh, T.N. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. B Eng Geol Environ, 67(1), 17-22. 18. Altındağ, R. (2012). Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. The Southern African Institute of Mining and Metallurgy, 112, 229—237. 19. Karakul., H., Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wave velocity under different degrees of saturation. Rock Mech Rock Eng, 46, 981-999. 20. Momeni, E., Nazir, R., Armaghani, D.J., Mohamad, E.T. (2015). Prediction of unconfined compressive strength of rocks: a review paper. Jurnal Teknologi, 77(11), 43—50. 21. Selçuk, L., Nar, A. (2015). Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number. Q J Eng Geol Hydroge 49(1), 67-75. 22. Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A., Singh, T.N. (2016). Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement, 88, 202—213. 23. Azimian, A. (2017). Application of statistical methods for predicting uniaxial compressive strength of limestone rocks using nondestructive tests. Acta Geotechnica, 12, 321—333. 24. Marini, P., Bellopede, R., Perino, L., De Regibus, C. (2011). Optimisation of an abrasion resistance test method on natural stones. Bull Eng Geol Environ, 70, 133–138. 25. ISRM (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, ISRM, Compilation arranged by the ISRM Turkish National Group, Ankara, 628p. 26. MacGregor, I.D., Chiu, K.Y. (2000). Porosity and wear resistance in Stone flooring tiles. J Test Eval, 28, 149–54. 27. Kahraman, S., Günaydın O. (2007). Empirical methods to predict the abrasion resistance of rock aggregates. Bull Eng Geol Environ, 66, 449–455. 28. Kahraman, S., Fener, M. (2008). Electrical resistivity measurements to predict abrasion resistance of rock aggregates. Bull Mater Sci, 31(2), 179–184. 29. Yavuz, H., Uğur, İ., Demirdağ, S. (2008). Abrasion resistance of carbonate rocks used in dimension stone industry and correlations between abrasion and rock properties. Int Journal of Rock Mechanics and Mining Sciences, 45, 260 – 267. 30. Yaralı, O. (2016). Kömür Çevre Kayaçları Dayanım Özelliklerinin Cerchar Aşınma İndeksine Olan Etkileri. Yerbilimleri, 37(2), 179-192. 31. Ureel, S., Momayez, M. (2017). Simple Correlations between Rock Abrasion and Other significant Rock Properties for Rock Mass and Intact Quartzite. Open Journal of Civil Engineering,7, 194-207. 32. Çelik, S. B., Çobanoğlu, İ., Atatanır, L. (2014). General material properties of Denizli (SW Turkey) travertines as a building stone. Bull Eng Geol Environ, 73, 825-838.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Sefer Beran Çelik

Publication Date March 1, 2018
Submission Date December 28, 2017
Published in Issue Year 2018 Volume: 30 Issue: 1

Cite

APA Çelik, S. B. (2018). Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 303-310.
AMA Çelik SB. Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2018;30(1):303-310.
Chicago Çelik, Sefer Beran. “Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi Ile Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 1 (March 2018): 303-10.
EndNote Çelik SB (March 1, 2018) Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30 1 303–310.
IEEE S. B. Çelik, “Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 303–310, 2018.
ISNAD Çelik, Sefer Beran. “Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi Ile Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (March 2018), 303-310.
JAMA Çelik SB. Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30:303–310.
MLA Çelik, Sefer Beran. “Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi Ile Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, 2018, pp. 303-10.
Vancouver Çelik SB. Karbonat Kayalarının Aşınma Dirençlerinin Geniş Disk Aşınma Deneyi ile Araştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2018;30(1):303-10.