Chlorella vulgaris Mikroalgi Kullanılarak Biyofotovoltaik Hücrede Güç Yoğunluğunun Araştırılması
Yıl 2021,
Cilt: 33 Sayı: 1, 91 - 99, 15.02.2021
Merve Bakır
Ergin Taşkan
Öz
Bu çalışmada laboratuvar ölçekli bir biyofotovoltaik hücre (BFVH) kullanılarak Chlorella Vulgaris mikroalginin elektrik üretim kapasitesi araştırılmıştır. BFVH’de anot materyali olarak kalay oksit kaplı bakır mesh elektrot, katot materyali olarak ise platin kaplı titanyum mesh elektrot kullanılmıştır. BFVH’de üretilen maksimum güç yoğunluğu 142,28 mW/m2 olarak elde edilmiştir. Nyquist analizi sonucunda anot biyofilm direncinin 0,74 Ω olduğu belirlenmiştir. BFVH’nin işletme süresi sonunda anot elektrotu yüzeyinden alınan SEM görüntülerinde yoğun bir biyofilm yapısının mevcut olduğu tespit edilmiştir. Elde edilen sonuçlar, BFVH’nin elektrik üretim performansının literatür değerleri ile kıyaslanabilir düzeyde olduğunu göstermiştir.
Destekleyen Kurum
Fırat Üniversitesi Bilimsel Araştırma Projeleri Birimi (FÜBAP)
Teşekkür
Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri Birimi (FÜBAP) tarafından desteklenmiş olan (Proje No: MF.18.62) “Biyofotovoltaik hücre ile elektrik üretimi” başlıklı yüksek lisans çalışmasının belli bir kısmını içermektedir. Katkılarından dolayı FÜBAP’a teşekkür ederiz.
Kaynakça
- [1] Bradley, R.W., Bombelli, P., Rowden, S. J. L. and Howe, C. J. 2012. Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria. Biochem. Soc. Trans., 40, 1302–1307.
- [2] Driver A, Bombelli, P. 2011. Biophotovoltaics Energy from algae. Catalyst.
- [3] Schuergers, N., C. Werlang, C. M. Ajo-Franklin and A. A. Boghossian, 2017. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci., 10, 1102–1115.
- [4] Inglesby, A.E., Yunus, K. and Fisher, A. C. 2013. In situ fluorescence and electrochemical monitoring of a photosynthetic microbial fuel cell . Phys. Chem. Chem. Phys., 15, 6903- 6911.
- [5] Pisciotta, J.M., Y. Zou, Y. and Baskakov, I. V. 2010. Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS One, 5, e10821.
- [6] Bombelli, P., R. W. Bradley, A. M. Scott, A. J. Philips, A. J. McCormick, S. M. Cruz, A. Anderson, K. Yunus, D. S. Bendall, P. J. Cameron, J. M. Davies, A. G. Smith, C. J. Howe and A. C. Fisher. 2011. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci., 4, 4690-4698.
- [7] Bradley, R.W., Bombelli, P., Lea-Smith D. J., and Howe, C. J. 2013. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys. Chem. Chem.
- [8] Fu, C. C., Hung, T. C., Wu, W. T., Wen, T. C. and C.-H. Su, C. H. 2010. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochem. Eng. J. 52, 175-180.
- [9] McCormick, A.J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C. and Howe, C. J. 2011. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci.,4, 4699-4709.
- [10] Thorne, R. J., Hu, H., Schneider, K. and Cameron, P. J. 2014. Trapping of redoxmediators at the surface of Chlorella vulgaris leads to error in measurements of cell reducing power. Phys. Chem. Chem. Phys., 16(12), 5810–6.
- [11] Ho, S., Chen, C. and Chang, J. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol., 113, 244–252.
- [12] Lee, B. D., Apel, W. A., & Walton, M. R. 2004. Screening of cyanobacterial species for calcification. Biotechnology Progress, 20(5), 1345–1351.
- [13] Fu, C. C., Su, C. H., Hung, T. C.,Hsieh, C. H., Suryani, D. and Wu, W. T. 2009. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour. Technol.,100, 4183–6.
- [14] Watanabe, K. 2008. "Recent developments in microbial fuel cell technologies for sustainable bioenergy", J Biosci Bioeng, 106 (6), 528-536.
- [15] Muñoz, R., Jacinto, M., Guieysse, B., Mattiasson, B .2005. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl Microbiol Biotechnol 67(5):699–707.
- [16] Chen, S., Jing, X., Tang, J., Fang, Y., & Zhou, S. 2017. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosens Bioelectron, 97, 369–376.
- [17] Senthilkumar, N., Sunirmal Sheet, Y. Sathishkumar, Yang Soo Lee, Siew-Moi Phang, Vengadesh Periasamy G. Gnana kumar. 2018. Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications. Applied Physics. 124:769.
- [18] Karthikeyan, C., Raj Kumar, T., Mehboobali Pannipara, Abdullah G. Al-Sehemi, Senthilkumar, N., Angelaalincy, M.J, Varalakshmi, P., Siew-Moi Phang, Vengadesh Periasamy, Gnana kumar, G. 2019. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of Chlorella vulgaris mediated biophotovoltaic cells. Environ. Prog. Sustain. Energy. 38:e13262.
- [19] Thorne, R., Hu, H., Schneider, K., Bombelli, P., Fisher, A., Peter, L. M. Dent, A .Cameron, P. J. 2011. Porous ceramic anode materials for photo-microbial fuel cells. J. Mater. Chem. 21, 18055-18060.
- [20] Bombelli, P., Müller, T., Herling, T. W., Howe, C. J. & Knowles, T. P. J. 2014. A High Power-Density, Mediator-Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells. Adv. Energy Mater. 5(2), 1401299.
- [21] Lin, C. C, Wei, C. H., Chen, C. I., Shieh C. J. and Liu, Y. C. 2013. Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol., 135, 640–643.
- [22] Sekar N., Umasankar, Y., Ramasamy, R. P. 2014. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Phys. Chem. Chem. Phys. 16 , 7862 .
- [23] Bombelli, P., Zarrouati, M., Thorne, R. J., Schneider, K., Rowden, S. J. L., Ali, A., Yunus, K., Cameron, P.J., Fisher, A.C., Wilson, D., Howe, C. J. and McCormick, A. J. 2012. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless biophotovoltaic (BPV) system. Physical Chemistry Chemical Physics,. 14(35): p. 12221-12229.
- [24] Luimstra, V. M., Kennedy, S. J., Güttler, J., Wood, S. A., Williams, D. E., Packer, M.A. 2013. A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J. Appl. Phycol. 26, 15.
- [25] Lan, J. C. W., Raman ,K., Huang , C. M., Chang ,C. M. 2013. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochem. Eng.J. 78, 39.