Research Article
BibTex RIS Cite

Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi

Year 2021, Volume: 33 Issue: 2, 481 - 490, 15.09.2021
https://doi.org/10.35234/fumbd.865326

Abstract

Bu çalışmada sıcaklığın, atom sayısının ve tek eksenli zorlanmanın Cu model sisteminin gerilme davranışı üzerine etkileri moleküler dinamik yöntemi kullanılarak incelendi. Atomlar arasındaki etkileşmelerin belirlenmesinde çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) kullanıldı. Zorlanma işlemi esnasında bölgesel atomik yapıların değişimleri Honeycutt ve Andersen tarafından tasarlanan genel komşu analiz (Common Neighbor Analysis-CNA) yöntemi ile belirlendi. Sıcaklığın, atom sayısının ve zorlanma oranının model Cu elementinin gerilme davranışları üzerinde etkili olduğu, kritik yüklenme değerinin sıcaklık artışı ile azaldığı, zorlanma oranının ve atom sayısının artışı ile arttığı gözlendi

References

  • [1] Luu HT, Gunkelmann N. Pressure-induced phase transformations in Fe-C: Molecular Dynamics Approach. Computational Materials Science 2019; 162: 295-303.
  • [2] Yildiz YO, Ahadib A, Kirca M. Strain rate effects on tensile and compression behavior of nano-crystalline nanoporous gold: A molecular dynamic study. Mechanics of Materials 2020; 143: 103338.
  • [3] Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science 2010; 48: 513-519.
  • [4] Tang CY, Zhang LC, Mylvaganam K. Rate dependent deformation of a silicon nanowire under uniaxial compression: Yielding, buckling and constitutive description. Computational Materials Science 2012; 51: 117–121.
  • [5] Chang WJ. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectronic Engineering 2003; 65: 239-246.
  • [6] Silva EZD, Silva AJRD, Fazzio A. How do gold nanowires break? Phys. Rev. Lett. 2001; 87: 256102.
  • [7] Jelínek P, Pérez R, Ortega J, Flores F. First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Phys. Rev. B 2003; 68: 085403.
  • [8] Nakamura A, Brandbyge M, Hansen LB, Jacobsen KW. Density functional simulation of a breaking nanowire Phys. Rev. Lett. 1999; 82: 1538-1541.
  • [9] Silva EZ, Novaes FD, Silva AJR, Fazzio A. Theoretical study of the formation, evolution, and breaking of gold nanowires. Phys. Rev. B 2004; 69: 115411.
  • [10] Davoodi J, Ahmadi M. Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B 2012; 43: 10-14.
  • [11] Etesami S.A., Asadi E., Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. Journal of Physics and Chemistry of Solids, 2018, 112: 61–72.
  • [12] Chamati H, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(100). Surface Science 2006; 600: 1793–1803.
  • [13] Mendelev MI, et al., Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine 2003; 83(35): 3977–3994.
  • [14] Cagin T, Dereli G, Uludogan M, Tomak M. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B 1999; 59(4): 3468-3472.
  • [15] Zhang XJ, Chen CL. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys. 2012, 169: 40-50.
  • [16] Tolpin KA, Bachurin VI, Yurasova VE. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys. Res. B 2012; 273: 76-79.
  • [17] Louail L, Maouche D, Roumili A, Hachemi A. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys. 2005; 91: 17-20.
  • [18] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.01.2021).
  • [19] Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Can. J. Phys. 2013; 91: 833–838.
  • [20] Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • [21] Voter AF, Chen SP. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc. 1987; 82: 175.
  • [22] Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals. Philosophical Magazine, 1984; 50: 45-55.
  • [23] Cai J, Ye YY. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 1996; 54: 8398.
  • [24] Kazanc S, Özgen S. The Changes of barrier energy in fcc-bcc phase transformation by shear stresses. G.U. Journal of Science 2004; 17(2): 35-42.
  • [25] Wadley HNG, Zhou X, Johnson RA, Neurock M. Mechanism, models and methods of vapor deposition. Progress in Materials Science 2001; 46: 329-377.
  • [26] Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • [27] Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
  • [28] Zhang L, Lu C, Tieu AK. Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters 2018; 227: 236-239.
  • [29] Schiotz J, Tolla FDD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature 1998; 391: 561-563.
  • [30] Jing Y, Meng Q, Zhao W. Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E 2009; 41: 685-689.
  • [31] Wen YH, Zhu ZZ, Zhu RZ. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science 2008; 41: 553-560.
  • [32] Howatson AM, Lund PG, Todd JD. Engineering Tables and Data. London: Chapman and Hall, 1972.
  • [33] Wang J, Huang QA, Yu H. Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D: Appl. Phys. 2008; 41: 165406.
  • [34] Koh SJA, Lee HP, Lu C, Cheng QH. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 2005; 72: 085414.
  • [35] Rahman A. Correlation in the motion of atoms in liquid Argon. Physical Review 1964; A405: 136.
  • [36] Li L, Han M. Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A 2017; 123: 450.
  • [37] Yang Z, Yang Q, Zhang G. Poisson’s ratio and Young’s modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular Dynamics. Physics Letters A 2017; 381: 280-283.
  • [38] Rawat S, Mitra N. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science 2020; 172: 109325.
  • [39] Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 2013; 21: 085004.
  • [40] Mishin Y, Mehl M, Papaconstantopoulos D, Voter A, Kress J. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 2001; 63: 224106.
  • [41] Winey J, Kubota A, Gupta Y. A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum. Model. Simul. Mater. Sci. Eng. 2009; 17: 055004.
  • [42] Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics 2016; 144: 094504.
  • [43] Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth 2020; 532: 125382.
  • [44] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
Year 2021, Volume: 33 Issue: 2, 481 - 490, 15.09.2021
https://doi.org/10.35234/fumbd.865326

Abstract

References

  • [1] Luu HT, Gunkelmann N. Pressure-induced phase transformations in Fe-C: Molecular Dynamics Approach. Computational Materials Science 2019; 162: 295-303.
  • [2] Yildiz YO, Ahadib A, Kirca M. Strain rate effects on tensile and compression behavior of nano-crystalline nanoporous gold: A molecular dynamic study. Mechanics of Materials 2020; 143: 103338.
  • [3] Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires under uniaxial loading. Computational Materials Science 2010; 48: 513-519.
  • [4] Tang CY, Zhang LC, Mylvaganam K. Rate dependent deformation of a silicon nanowire under uniaxial compression: Yielding, buckling and constitutive description. Computational Materials Science 2012; 51: 117–121.
  • [5] Chang WJ. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectronic Engineering 2003; 65: 239-246.
  • [6] Silva EZD, Silva AJRD, Fazzio A. How do gold nanowires break? Phys. Rev. Lett. 2001; 87: 256102.
  • [7] Jelínek P, Pérez R, Ortega J, Flores F. First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Phys. Rev. B 2003; 68: 085403.
  • [8] Nakamura A, Brandbyge M, Hansen LB, Jacobsen KW. Density functional simulation of a breaking nanowire Phys. Rev. Lett. 1999; 82: 1538-1541.
  • [9] Silva EZ, Novaes FD, Silva AJR, Fazzio A. Theoretical study of the formation, evolution, and breaking of gold nanowires. Phys. Rev. B 2004; 69: 115411.
  • [10] Davoodi J, Ahmadi M. Molecular Dynamics simulation of elastic properties of CuPd nanowire. Composites: Part B 2012; 43: 10-14.
  • [11] Etesami S.A., Asadi E., Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. Journal of Physics and Chemistry of Solids, 2018, 112: 61–72.
  • [12] Chamati H, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(100). Surface Science 2006; 600: 1793–1803.
  • [13] Mendelev MI, et al., Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical Magazine 2003; 83(35): 3977–3994.
  • [14] Cagin T, Dereli G, Uludogan M, Tomak M. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B 1999; 59(4): 3468-3472.
  • [15] Zhang XJ, Chen CL. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys. 2012, 169: 40-50.
  • [16] Tolpin KA, Bachurin VI, Yurasova VE. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys. Res. B 2012; 273: 76-79.
  • [17] Louail L, Maouche D, Roumili A, Hachemi A. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys. 2005; 91: 17-20.
  • [18] http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.01.2021).
  • [19] Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Can. J. Phys. 2013; 91: 833–838.
  • [20] Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • [21] Voter AF, Chen SP. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc. 1987; 82: 175.
  • [22] Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals. Philosophical Magazine, 1984; 50: 45-55.
  • [23] Cai J, Ye YY. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 1996; 54: 8398.
  • [24] Kazanc S, Özgen S. The Changes of barrier energy in fcc-bcc phase transformation by shear stresses. G.U. Journal of Science 2004; 17(2): 35-42.
  • [25] Wadley HNG, Zhou X, Johnson RA, Neurock M. Mechanism, models and methods of vapor deposition. Progress in Materials Science 2001; 46: 329-377.
  • [26] Malins A, Williams SR, Eggers J, Royall CP. Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics 2013; 139: 234506.
  • [27] Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
  • [28] Zhang L, Lu C, Tieu AK. Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters 2018; 227: 236-239.
  • [29] Schiotz J, Tolla FDD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature 1998; 391: 561-563.
  • [30] Jing Y, Meng Q, Zhao W. Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E 2009; 41: 685-689.
  • [31] Wen YH, Zhu ZZ, Zhu RZ. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Computational Materials Science 2008; 41: 553-560.
  • [32] Howatson AM, Lund PG, Todd JD. Engineering Tables and Data. London: Chapman and Hall, 1972.
  • [33] Wang J, Huang QA, Yu H. Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D: Appl. Phys. 2008; 41: 165406.
  • [34] Koh SJA, Lee HP, Lu C, Cheng QH. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 2005; 72: 085414.
  • [35] Rahman A. Correlation in the motion of atoms in liquid Argon. Physical Review 1964; A405: 136.
  • [36] Li L, Han M. Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A 2017; 123: 450.
  • [37] Yang Z, Yang Q, Zhang G. Poisson’s ratio and Young’s modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular Dynamics. Physics Letters A 2017; 381: 280-283.
  • [38] Rawat S, Mitra N. Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Computational Materials Science 2020; 172: 109325.
  • [39] Bonny G, Castin N, Terentyev D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 2013; 21: 085004.
  • [40] Mishin Y, Mehl M, Papaconstantopoulos D, Voter A, Kress J. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 2001; 63: 224106.
  • [41] Winey J, Kubota A, Gupta Y. A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum. Model. Simul. Mater. Sci. Eng. 2009; 17: 055004.
  • [42] Bañuelos EU, Aburto CC, Arce AM. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics 2016; 144: 094504.
  • [43] Fanga R, Wanga W, Guoa L, Zhanga K, Zhanga X, Lib H. Atomic insight into the solidification of Cu melt confined in graphene Nanoslits. Journal of Crystal Growth 2020; 532: 125382.
  • [44] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Sefa Kazanç 0000-0002-8896-8571

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 15, 2021
Submission Date January 20, 2021
Published in Issue Year 2021 Volume: 33 Issue: 2

Cite

APA Kazanç, S., & Aksu Canbay, C. (2021). Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 33(2), 481-490. https://doi.org/10.35234/fumbd.865326
AMA Kazanç S, Aksu Canbay C. Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2021;33(2):481-490. doi:10.35234/fumbd.865326
Chicago Kazanç, Sefa, and Canan Aksu Canbay. “Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, no. 2 (September 2021): 481-90. https://doi.org/10.35234/fumbd.865326.
EndNote Kazanç S, Aksu Canbay C (September 1, 2021) Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33 2 481–490.
IEEE S. Kazanç and C. Aksu Canbay, “Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, pp. 481–490, 2021, doi: 10.35234/fumbd.865326.
ISNAD Kazanç, Sefa - Aksu Canbay, Canan. “Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33/2 (September 2021), 481-490. https://doi.org/10.35234/fumbd.865326.
JAMA Kazanç S, Aksu Canbay C. Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:481–490.
MLA Kazanç, Sefa and Canan Aksu Canbay. “Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 33, no. 2, 2021, pp. 481-90, doi:10.35234/fumbd.865326.
Vancouver Kazanç S, Aksu Canbay C. Cu’nun Mekanik Özelliklerine Tek Eksenli Germe Zorlanmasının Etkisi: Moleküler Dinamik Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33(2):481-90.