Research Article
BibTex RIS Cite

Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem

Year 2022, Volume: 34 Issue: 2, 485 - 494, 30.09.2022
https://doi.org/10.35234/fumbd.1014951

Abstract

Karayolu yüzeyindeki asfalt çatlakları en yaygın kaplama hasarlarından biridir. Bu çatlaklar zamanında tespit edilip bakıma alınmazsa büyüyerek trafik güvenliğini ve yoğunluğunu arttıracak boyutlara ulaşmaktadır. Bu nedenle, asfalt çatlaklarının tespitinin hızlı bir şekilde gerçekleştirilmesi çok önemlidir. Geleneksel manuel çatlak tespiti, son derece zaman alıcı, çok maliyetli ve çok çaba gerektirir. Bu nedenle, araştırmacılar odaklarını otomatik asfalt çatlaklarının tespitine yoğunlaştırdılar. Ancak, son yıllarda otomatik çatlak tespiti kapsamlı olarak araştırılmasına rağmen çatlakların farklı yoğunluğa sahip olması ve kaplama ortamının karmaşıklığı nedeniyle hala zor bir görevdir. Bu çalışmada, bu zorluğun üstesinden gelmek için konvolüsyon sinir ağı temelli bir yöntem önerildi. Önerilen yöntem, sınıflandırma ve segmentasyondaki başarısı ve hafifliği bilinen MobileNetv2 ’nin temelde kullandığı konvolüsyon ve ters artıklı blok yapılarını baz alarak geliştirildi. Yapılan deneysel testler sonucunda, önerilen yöntemin performansı literatürdeki diğer yöntemlere göre daha yüksek olduğu görülmektedir. Bu da, otomatik asfalt çatlak tespitinin daha başarılı olması anlamına gelmektedir.

References

  • B. Safaei and N. Safaei, “Studying the risks and factors contributing to motorcycle crashes , and prioritizing strategies to reduce fatalities , and improve community health,” no. February, 2021, doi: 10.13140/RG.2.2.23936.35843/1.
  • C. Torres-Machí, A. Chamorro, E. Pellicer, V. Yepes, and C. Videla, “Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making,” Transp. Res. Rec., vol. 2523, pp. 56–63, 2015, doi: 10.3141/2523-07.
  • J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, “The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring,” in Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys ’08, 2008, vol. 70, no. 9, p. 29, doi: 10.1145/1378600.1378605.
  • N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
  • Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using evolutionary gabor filter optimization,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 125–137, 2005, doi: 10.1109/TITS.2005.848363.
  • N. Attoh-Okine and A. Ayenu-Prah, “Evaluating pavement cracks with bidimensional empirical mode decomposition,” EURASIP J. Adv. Signal Process., vol. 2008, 2008, doi: 10.1155/2008/861701.
  • Y. Hu, C. X. Zhao, and H. N. Wang, “Automatic pavement crack detection using texture and shape descriptors,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 27, no. 5, pp. 398–405, 2010, doi: 10.4103/0256-4602.62225.
  • N. D. Hoang and Q. L. Nguyen, “A novel method for asphalt pavement crack classification based on image processing and machine learning,” Eng. Comput., vol. 35, no. 2, pp. 487–498, 2019, doi: 10.1007/s00366-018-0611-9.
  • S. Mokhtari, L. Wu, and H. B. Yun, “Comparison of supervised classifcation techniques for vision-based pavement crack detection,” Transp. Res. Rec., vol. 2595, pp. 119–127, 2016, doi: 10.3141/2595-13.
  • Y. J. Cha, W. Choi, and O. Büyüköztürk, “Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 5, pp. 361–378, 2017, doi: 10.1111/mice.12263.
  • L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using deep convolutional neural network,” in 2016 IEEE International Conference on Image Processing (ICIP), Sep. 2016, pp. 3708–3712, doi: 10.1109/ICIP.2016.7533052.
  • A. Zhang et al., “Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 10, pp. 805–819, 2017, doi: 10.1111/mice.12297.
  • X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, “Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 12, pp. 1090–1109, 2018, doi: 10.1111/mice.12412.
  • Z. Liu, Y. Cao, Y. Wang, and W. Wang, “Computer vision-based concrete crack detection using U-net fully convolutional networks,” Autom. Constr., vol. 104, no. January, pp. 129–139, 2019, doi: 10.1016/j.autcon.2019.04.005.
  • M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
  • T. Emara, H. E. A. El Munim, and H. M. Abbas, “LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation,” 2019 Digit. Image Comput. Tech. Appl. DICTA 2019, 2019, doi: 10.1109/DICTA47822.2019.8945975.
  • J. H. Feng, H. Yuan, Y. Q. Hu, J. Lin, S. W. Liu, and X. Luo, “Research on deep learning method for rail surface defect detection,” IET Electr. Syst. Transp., vol. 10, no. 4, pp. 436–442, 2020, doi: 10.1049/iet-est.2020.0041.
  • F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1525–1535, 2020, doi: 10.1109/TITS.2019.2910595.
  • P. Enkvetchakul and O. Surinta, “Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition,” Appl. Sci. Eng. Prog., 2021, doi: 10.14416/j.asep.2021.01.003.
  • A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv, 2017.
  • D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
  • I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–16, 2017.
  • L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,” Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945, doi: 10.2307/1932409.
  • F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural networks for volumetric medical image segmentation,” Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016, pp. 565–571, 2016, doi: 10.1109/3DV.2016.79.
  • K. O. Babalola et al., “An evaluation of four automatic methods of segmenting the subcortical structures in the brain,” Neuroimage, vol. 47, no. 4, pp. 1435–1447, 2009, doi: 10.1016/j.neuroimage.2009.05.029.
  • L. Wang, C. Wang, Z. Sun, and S. Chen, “An improved dice loss for pneumothorax segmentation by mining the information of negative areas,” IEEE Access, vol. 8, pp. 167939–167949, 2020, doi: 10.1109/ACCESS.2020.3020475.
  • T. Calders and S. Jaroszewicz, “Efficient AUC optimization for classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4702 LNAI, pp. 42–53, 2007, doi: 10.1007/978-3-540-74976-9_8.
  • J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural Network,” in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Feb. 2016, pp. 26–35, doi: 10.1145/2847263.2847265.
  • A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators of deep learning networks for learning and classification: A review,” IEEE Access, vol. 7, pp. 7823–7859, 2019, doi: 10.1109/ACCESS.2018.2890150.
  • N. T. H. Nguyen, T. H. Le, S. Perry, and T. T. Nguyen, “Pavement crack detection using convolutional neural network,” ACM Int. Conf. Proceeding Ser., pp. 251–256, 2018, doi: 10.1145/3287921.3287949.
  • F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1525–1535, 2020, doi: 10.1109/TITS.2019.2910595.
  • F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.
  • H. Zhang et al., “ResNeSt: Split-Attention Networks,” 2020, [Online]. Available: http://arxiv.org/abs/2004.08955.
  • S. L. H. Lau, E. K. P. Chong, X. Yang, and X. Wang, “Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network,” IEEE Access, vol. 8, pp. 114892–114899, 2020, doi: 10.1109/ACCESS.2020.3003638.
  • W. Wang and C. Su, “Convolutional Neural Network-Based Pavement Crack Segmentation Using Pyramid Attention Network,” IEEE Access, vol. 8, pp. 206548–206558, 2020, doi: 10.1109/ACCESS.2020.3037667.

A New Convolutional Neural Network Based Method for Detection of Asphalt Cracks on Highways

Year 2022, Volume: 34 Issue: 2, 485 - 494, 30.09.2022
https://doi.org/10.35234/fumbd.1014951

Abstract

Asphalt cracks on the highway surface are one of the most common pavement damage. If these cracks are not detected and taken care of on time, they grow and reach dimensions that will increase traffic safety and density. Therefore, it is very important to carry out the detection of asphalt cracks quickly. Traditional manual crack detection is extremely time consuming, very costly and requires a lot of effort. Therefore, the researchers concentrated their focus on the detection of automatic asphalt cracks. However, although automatic crack detection has been extensively investigated in recent years, it is still a difficult task due to the fact that cracks have different densities and the complexity of the pavement environment. In this study, a convolutional neural network-based method is proposed to overcome this difficulty. The proposed method was developed based on the convolution and inverted residual block structures used by MobileNetv2, which is known for its success and lightweight in classification and segmentation. As a result of the experimental tests, it is seen that the performance of the proposed method is higher than the other methods in the literature. This means that automatic asphalt crack detection is more successful.

References

  • B. Safaei and N. Safaei, “Studying the risks and factors contributing to motorcycle crashes , and prioritizing strategies to reduce fatalities , and improve community health,” no. February, 2021, doi: 10.13140/RG.2.2.23936.35843/1.
  • C. Torres-Machí, A. Chamorro, E. Pellicer, V. Yepes, and C. Videla, “Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making,” Transp. Res. Rec., vol. 2523, pp. 56–63, 2015, doi: 10.3141/2523-07.
  • J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, “The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring,” in Proceeding of the 6th international conference on Mobile systems, applications, and services - MobiSys ’08, 2008, vol. 70, no. 9, p. 29, doi: 10.1145/1378600.1378605.
  • N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
  • Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using evolutionary gabor filter optimization,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 125–137, 2005, doi: 10.1109/TITS.2005.848363.
  • N. Attoh-Okine and A. Ayenu-Prah, “Evaluating pavement cracks with bidimensional empirical mode decomposition,” EURASIP J. Adv. Signal Process., vol. 2008, 2008, doi: 10.1155/2008/861701.
  • Y. Hu, C. X. Zhao, and H. N. Wang, “Automatic pavement crack detection using texture and shape descriptors,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 27, no. 5, pp. 398–405, 2010, doi: 10.4103/0256-4602.62225.
  • N. D. Hoang and Q. L. Nguyen, “A novel method for asphalt pavement crack classification based on image processing and machine learning,” Eng. Comput., vol. 35, no. 2, pp. 487–498, 2019, doi: 10.1007/s00366-018-0611-9.
  • S. Mokhtari, L. Wu, and H. B. Yun, “Comparison of supervised classifcation techniques for vision-based pavement crack detection,” Transp. Res. Rec., vol. 2595, pp. 119–127, 2016, doi: 10.3141/2595-13.
  • Y. J. Cha, W. Choi, and O. Büyüköztürk, “Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 5, pp. 361–378, 2017, doi: 10.1111/mice.12263.
  • L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using deep convolutional neural network,” in 2016 IEEE International Conference on Image Processing (ICIP), Sep. 2016, pp. 3708–3712, doi: 10.1109/ICIP.2016.7533052.
  • A. Zhang et al., “Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network,” Comput. Civ. Infrastruct. Eng., vol. 32, no. 10, pp. 805–819, 2017, doi: 10.1111/mice.12297.
  • X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, “Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network,” Comput. Civ. Infrastruct. Eng., vol. 33, no. 12, pp. 1090–1109, 2018, doi: 10.1111/mice.12412.
  • Z. Liu, Y. Cao, Y. Wang, and W. Wang, “Computer vision-based concrete crack detection using U-net fully convolutional networks,” Autom. Constr., vol. 104, no. January, pp. 129–139, 2019, doi: 10.1016/j.autcon.2019.04.005.
  • M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.
  • T. Emara, H. E. A. El Munim, and H. M. Abbas, “LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation,” 2019 Digit. Image Comput. Tech. Appl. DICTA 2019, 2019, doi: 10.1109/DICTA47822.2019.8945975.
  • J. H. Feng, H. Yuan, Y. Q. Hu, J. Lin, S. W. Liu, and X. Luo, “Research on deep learning method for rail surface defect detection,” IET Electr. Syst. Transp., vol. 10, no. 4, pp. 436–442, 2020, doi: 10.1049/iet-est.2020.0041.
  • F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1525–1535, 2020, doi: 10.1109/TITS.2019.2910595.
  • P. Enkvetchakul and O. Surinta, “Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition,” Appl. Sci. Eng. Prog., 2021, doi: 10.14416/j.asep.2021.01.003.
  • A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv, 2017.
  • D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
  • I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–16, 2017.
  • L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,” Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945, doi: 10.2307/1932409.
  • F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural networks for volumetric medical image segmentation,” Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016, pp. 565–571, 2016, doi: 10.1109/3DV.2016.79.
  • K. O. Babalola et al., “An evaluation of four automatic methods of segmenting the subcortical structures in the brain,” Neuroimage, vol. 47, no. 4, pp. 1435–1447, 2009, doi: 10.1016/j.neuroimage.2009.05.029.
  • L. Wang, C. Wang, Z. Sun, and S. Chen, “An improved dice loss for pneumothorax segmentation by mining the information of negative areas,” IEEE Access, vol. 8, pp. 167939–167949, 2020, doi: 10.1109/ACCESS.2020.3020475.
  • T. Calders and S. Jaroszewicz, “Efficient AUC optimization for classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4702 LNAI, pp. 42–53, 2007, doi: 10.1007/978-3-540-74976-9_8.
  • J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural Network,” in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Feb. 2016, pp. 26–35, doi: 10.1145/2847263.2847265.
  • A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators of deep learning networks for learning and classification: A review,” IEEE Access, vol. 7, pp. 7823–7859, 2019, doi: 10.1109/ACCESS.2018.2890150.
  • N. T. H. Nguyen, T. H. Le, S. Perry, and T. T. Nguyen, “Pavement crack detection using convolutional neural network,” ACM Int. Conf. Proceeding Ser., pp. 251–256, 2018, doi: 10.1145/3287921.3287949.
  • F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1525–1535, 2020, doi: 10.1109/TITS.2019.2910595.
  • F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.
  • H. Zhang et al., “ResNeSt: Split-Attention Networks,” 2020, [Online]. Available: http://arxiv.org/abs/2004.08955.
  • S. L. H. Lau, E. K. P. Chong, X. Yang, and X. Wang, “Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network,” IEEE Access, vol. 8, pp. 114892–114899, 2020, doi: 10.1109/ACCESS.2020.3003638.
  • W. Wang and C. Su, “Convolutional Neural Network-Based Pavement Crack Segmentation Using Pyramid Attention Network,” IEEE Access, vol. 8, pp. 206548–206558, 2020, doi: 10.1109/ACCESS.2020.3037667.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section MBD
Authors

Gürkan Doğan 0000-0003-2497-8348

Burhan Ergen 0000-0003-3244-2615

Publication Date September 30, 2022
Submission Date October 27, 2021
Published in Issue Year 2022 Volume: 34 Issue: 2

Cite

APA Doğan, G., & Ergen, B. (2022). Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 485-494. https://doi.org/10.35234/fumbd.1014951
AMA Doğan G, Ergen B. Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2022;34(2):485-494. doi:10.35234/fumbd.1014951
Chicago Doğan, Gürkan, and Burhan Ergen. “Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34, no. 2 (September 2022): 485-94. https://doi.org/10.35234/fumbd.1014951.
EndNote Doğan G, Ergen B (September 1, 2022) Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34 2 485–494.
IEEE G. Doğan and B. Ergen, “Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 34, no. 2, pp. 485–494, 2022, doi: 10.35234/fumbd.1014951.
ISNAD Doğan, Gürkan - Ergen, Burhan. “Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 34/2 (September 2022), 485-494. https://doi.org/10.35234/fumbd.1014951.
JAMA Doğan G, Ergen B. Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34:485–494.
MLA Doğan, Gürkan and Burhan Ergen. “Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 34, no. 2, 2022, pp. 485-94, doi:10.35234/fumbd.1014951.
Vancouver Doğan G, Ergen B. Karayollarındaki Asfalt Çatlaklarının Tespiti İçin Yeni Bir Konvolüsyonel Sinir Ağı Tabanlı Yöntem. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;34(2):485-94.