Research Article
BibTex RIS Cite

Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini

Year 2023, Volume: 35 Issue: 1, 151 - 157, 28.03.2023
https://doi.org/10.35234/fumbd.1174428

Abstract

Bu çalışmanın amacı farklı oranlarda geri dönüşümlü beton agregası kullanılarak üretilen betonların çökme değerlerini yüksek doğrulukla tahmin eden matematiksel bir model geliştirmektir. Bu amaçla farklı karışımlara sahip beton serileri üretilmiş ve bu serilere ait çökme değerleri kullanılarak tepki yüzeyi metodu üzerinde istatistik analizler yapılmıştır. Yapılan analizler sonucunda geliştirilen modelin belirlilik katsayısı 0.87 olarak hesaplanmış ve bu durum modelin yüksek doğruluklu ve etkin bir şekilde kullanılabileceğini göstermiştir. Geri dönüşümlü beton agregaları yüksek su emme kapasitesi, düşük yoğunluk ve geniş karakteristik özelliklere sahip olduğundan geliştirilen bu modelin benzer yoğunluk ve su emme değerlerine sahip olan geri dönüşüm agregalı betonların çökme değerlerini pratik ve yüksek doğrulukla tahmin edileceği düşünülmektedir. Böylece bu modelin kullanımının, beton karışım hesapları ve deneme karışımları sürecinde zaman ve işçilik açısından faydalar sağlayacağı düşünülmektedir.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeler Koordinasyon Birimi

Project Number

MF.21.52

Thanks

Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “MF.21.52” nolu proje ile desteklenmiştir.

References

  • J. de-Prado-Gil, C. Palencia, N. Silva-Monteiro, R. Martínez-García, To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models, Case Stud. Constr. Mater. 16 (2022) e01046. https://doi.org/10.1016/j.cscm.2022.e01046.
  • M. Shmlls, M. Abed, T. Horvath, D. Bozsaky, Multicriteria Based Optimization of Second Generation Recycled Aggregate Concrete, Case Stud. Constr. Mater. (2022) e01447. https://doi.org/10.1016/j.cscm.2022.e01447.
  • M. Abed, J. Fořt, K. Rashid, Multicriterial life cycle assessment of eco-efficient self-compacting concrete modified by waste perlite powder and/or recycled concrete aggregate, Constr. Build. Mater. 348 (2022) 128696. https://doi.org/10.1016/j.conbuildmat.2022.128696.
  • L.A.L. Ruiz, X.R. Ramon, C.M.L. Mercedes, S.G. Domingo, Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain, Waste Manag. 144 (2022) 387–400. https://doi.org/10.1016/j.wasman.2022.04.008.
  • J.F. Dong, Q.Y. Wang, Z.W. Guan, H.K. Chai, High-temperature behaviour of basalt fibre reinforced concrete made with recycled aggregates from earthquake waste, J. Build. Eng. 48 (2022) 103895. https://doi.org/10.1016/j.jobe.2021.103895.
  • N. Tsydenova, T. Becker, G. Walther, Optimised design of concrete recycling networks: The case of North Rhine-Westphalia, Waste Manag. 135 (2021) 309–317. https://doi.org/10.1016/j.wasman.2021.09.013.
  • M. Ulucan, K.E. Alyamac, An integrative approach of the use of recycled concrete aggregate in high-rise buildings: Example of the Elysium, Struct. Concr. (2022). https://doi.org/10.1002/suco.202200512.
  • M. Ulucan, K.E. Alyamac, A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental, Waste Manag. 146 (2022) 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • F. de Andrade Salgado, F. de Andrade Silva, Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review, J. Build. Eng. 52 (2022) 104452. https://doi.org/10.1016/j.jobe.2022.104452.
  • S. Marinković, V. Radonjanin, M. Malešev, I. Ignjatović, Comparative environmental assessment of natural and recycled aggregate concrete, Waste Manag. 30 (2010) 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012.
  • T. Ding, J. Xiao, Estimation of building-related construction and demolition waste in Shanghai, Waste Manag. 34 (2014) 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029.
  • T. Ding, J. Xiao, V.W.Y. Tam, A closed-loop life cycle assessment of recycled aggregate concrete utilization in China, Waste Manag. 56 (2016) 367–375. https://doi.org/10.1016/j.wasman.2016.05.031.
  • G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235. https://doi.org/10.1016/j.conbuildmat.2013.11.054.
  • N. Tošić, S. Marinković, T. Dašić, M. Stanić, Multicriteria optimization of natural and recycled aggregate concrete for structural use, J. Clean. Prod. 87 (2015) 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070.
  • S. Arumugam, G. Sriram, T. Rajmohan, Multi-response optimization of epoxidation process parameters of rapeseed oil using response surface methodology (RSM)-based desirability analysis, Arab. J. Sci. Eng. 39 (2014) 2277–2287.
  • W. Wang, Y. Cheng, G. Tan, Design optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology, Materials (Basel). 11 (2018) 1311.
  • K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod. 144 (2017) 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156.
  • M.A.A. Aldahdooh, N.M. Bunnori, M.A.M. Johari, Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method, Mater. Des. 52 (2013) 957–965.
  • T. Demir, M. Ulucan, K.E. Alyamac, Determination of the Early Age Strength of High-Strength Concrete Using RSM Method, Fırat Univ. J. Eng. Sci. 34 (2022) 105–114. https://doi.org/10.35234/fumbd.972829. B. Demirel, E. Gultekin, K.E. Alyamac, Performance of structural lightweight concrete containing metakaolin after elevated temperature, KSCE J. Civ. Eng. 23 (2019) 2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
  • A. Ustaoglu, B. Kursuncu, M. Alptekin, M.S. Gok, Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods, Appl. Therm. Eng. 180 (2020) 115816.
  • T. Demir, M. Ulucan, K.E. Alyamac, Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes, Processes (2023) 673-689. https://doi.org/10.3390/pr11030673

Prediction of Slump Values of Recycled Aggregate Concretes by Response Surface Method

Year 2023, Volume: 35 Issue: 1, 151 - 157, 28.03.2023
https://doi.org/10.35234/fumbd.1174428

Abstract

The aim of this study is to develop a mathematical model that predicts the slump values of concrete produced by using recycled concrete aggregate in different proportions with high accuracy. For this purpose, concrete series with different mixtures were produced and statistical analyzes were made on the response surface method by using the slump values of these series. As a result of the analyses made, the coefficient of determination of the developed model was calculated as 0.87 and this showed that the model could be used with high accuracy and effectively. Using this model, it is thought that the slump values of the concretes to be produced using recycled concrete aggregates with similar density and water absorption values will be estimated practically and with high accuracy. Thus, using this model will provide benefits in terms of time and labor in the concrete mix calculations and trial mixes.

Project Number

MF.21.52

References

  • J. de-Prado-Gil, C. Palencia, N. Silva-Monteiro, R. Martínez-García, To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models, Case Stud. Constr. Mater. 16 (2022) e01046. https://doi.org/10.1016/j.cscm.2022.e01046.
  • M. Shmlls, M. Abed, T. Horvath, D. Bozsaky, Multicriteria Based Optimization of Second Generation Recycled Aggregate Concrete, Case Stud. Constr. Mater. (2022) e01447. https://doi.org/10.1016/j.cscm.2022.e01447.
  • M. Abed, J. Fořt, K. Rashid, Multicriterial life cycle assessment of eco-efficient self-compacting concrete modified by waste perlite powder and/or recycled concrete aggregate, Constr. Build. Mater. 348 (2022) 128696. https://doi.org/10.1016/j.conbuildmat.2022.128696.
  • L.A.L. Ruiz, X.R. Ramon, C.M.L. Mercedes, S.G. Domingo, Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain, Waste Manag. 144 (2022) 387–400. https://doi.org/10.1016/j.wasman.2022.04.008.
  • J.F. Dong, Q.Y. Wang, Z.W. Guan, H.K. Chai, High-temperature behaviour of basalt fibre reinforced concrete made with recycled aggregates from earthquake waste, J. Build. Eng. 48 (2022) 103895. https://doi.org/10.1016/j.jobe.2021.103895.
  • N. Tsydenova, T. Becker, G. Walther, Optimised design of concrete recycling networks: The case of North Rhine-Westphalia, Waste Manag. 135 (2021) 309–317. https://doi.org/10.1016/j.wasman.2021.09.013.
  • M. Ulucan, K.E. Alyamac, An integrative approach of the use of recycled concrete aggregate in high-rise buildings: Example of the Elysium, Struct. Concr. (2022). https://doi.org/10.1002/suco.202200512.
  • M. Ulucan, K.E. Alyamac, A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental, Waste Manag. 146 (2022) 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • F. de Andrade Salgado, F. de Andrade Silva, Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review, J. Build. Eng. 52 (2022) 104452. https://doi.org/10.1016/j.jobe.2022.104452.
  • S. Marinković, V. Radonjanin, M. Malešev, I. Ignjatović, Comparative environmental assessment of natural and recycled aggregate concrete, Waste Manag. 30 (2010) 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012.
  • T. Ding, J. Xiao, Estimation of building-related construction and demolition waste in Shanghai, Waste Manag. 34 (2014) 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029.
  • T. Ding, J. Xiao, V.W.Y. Tam, A closed-loop life cycle assessment of recycled aggregate concrete utilization in China, Waste Manag. 56 (2016) 367–375. https://doi.org/10.1016/j.wasman.2016.05.031.
  • G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235. https://doi.org/10.1016/j.conbuildmat.2013.11.054.
  • N. Tošić, S. Marinković, T. Dašić, M. Stanić, Multicriteria optimization of natural and recycled aggregate concrete for structural use, J. Clean. Prod. 87 (2015) 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070.
  • S. Arumugam, G. Sriram, T. Rajmohan, Multi-response optimization of epoxidation process parameters of rapeseed oil using response surface methodology (RSM)-based desirability analysis, Arab. J. Sci. Eng. 39 (2014) 2277–2287.
  • W. Wang, Y. Cheng, G. Tan, Design optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology, Materials (Basel). 11 (2018) 1311.
  • K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod. 144 (2017) 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156.
  • M.A.A. Aldahdooh, N.M. Bunnori, M.A.M. Johari, Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method, Mater. Des. 52 (2013) 957–965.
  • T. Demir, M. Ulucan, K.E. Alyamac, Determination of the Early Age Strength of High-Strength Concrete Using RSM Method, Fırat Univ. J. Eng. Sci. 34 (2022) 105–114. https://doi.org/10.35234/fumbd.972829. B. Demirel, E. Gultekin, K.E. Alyamac, Performance of structural lightweight concrete containing metakaolin after elevated temperature, KSCE J. Civ. Eng. 23 (2019) 2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
  • A. Ustaoglu, B. Kursuncu, M. Alptekin, M.S. Gok, Performance optimization and parametric evaluation of the cascade vapor compression refrigeration cycle using Taguchi and ANOVA methods, Appl. Therm. Eng. 180 (2020) 115816.
  • T. Demir, M. Ulucan, K.E. Alyamac, Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes, Processes (2023) 673-689. https://doi.org/10.3390/pr11030673
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Muhammed Ulucan 0000-0001-7629-6846

Kürşat Esat Alyamaç 0000-0002-3226-4073

Project Number MF.21.52
Publication Date March 28, 2023
Submission Date September 13, 2022
Published in Issue Year 2023 Volume: 35 Issue: 1

Cite

APA Ulucan, M., & Alyamaç, K. E. (2023). Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(1), 151-157. https://doi.org/10.35234/fumbd.1174428
AMA Ulucan M, Alyamaç KE. Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. March 2023;35(1):151-157. doi:10.35234/fumbd.1174428
Chicago Ulucan, Muhammed, and Kürşat Esat Alyamaç. “Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu Ile Tahmini”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35, no. 1 (March 2023): 151-57. https://doi.org/10.35234/fumbd.1174428.
EndNote Ulucan M, Alyamaç KE (March 1, 2023) Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35 1 151–157.
IEEE M. Ulucan and K. E. Alyamaç, “Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, pp. 151–157, 2023, doi: 10.35234/fumbd.1174428.
ISNAD Ulucan, Muhammed - Alyamaç, Kürşat Esat. “Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu Ile Tahmini”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35/1 (March 2023), 151-157. https://doi.org/10.35234/fumbd.1174428.
JAMA Ulucan M, Alyamaç KE. Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35:151–157.
MLA Ulucan, Muhammed and Kürşat Esat Alyamaç. “Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu Ile Tahmini”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 35, no. 1, 2023, pp. 151-7, doi:10.35234/fumbd.1174428.
Vancouver Ulucan M, Alyamaç KE. Geri Dönüşüm Agregalı Betonların Çökme Değerlerinin Tepki Yüzeyi Metodu ile Tahmini. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2023;35(1):151-7.