Araştırma Makalesi
BibTex RIS Kaynak Göster

Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi

Yıl 2024, Cilt: 36 Sayı: 1, 193 - 199, 28.03.2024
https://doi.org/10.35234/fumbd.1373775

Öz

Bu çalışma deprem yıkıntı atıkları ve uçucu kül kullanılarak üretilen atık betonların taze beton özelliklerini yüksek doğrulukla tahmin edebilmek için sayısal bir model geliştirmeyi amaçlamaktadır. Bu amaç doğrultusunda farklı çimento dozajı, farklı su/çimento oranı, farklı uçucu kül ikame oranı içeren 24 farklı atık beton serisi üretilmiştir. Üretilen beton serileri üzerinde taze beton özelliklerini belirlemek için slump testleri uygulanmıştır. Elde edilen slump değerleri ve karışım miktarları dikkate alınarak tepki yüzeyi metodu üzerinde istatistik analizler yapılmış, sayısal bir model geliştirilmiştir. Geliştirilen modele ait belirlilik katsayısı 0.97 olup, tahmin sonuçları oldukça iyi düzeydedir. Aynı zamanda ek çimento esaslı malzeme olarak uçucu kül ile çimentonun yer değiştirilerek kullanılması, iri agrega olarak deprem yıkıntı atıklarının kullanılmasının sürdürülebilir kalkınma ve döngüsel ekonomi açısından büyük avantajlar sağladığı düşünülmektedir.

Kaynakça

  • T. Ding, J. Xiao, Estimation of building-related construction and demolition waste in Shanghai, Waste Manag. 34 (2014) 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029.
  • M. Mália, J. de Brito, M.D. Pinheiro, M. Bravo, Construction and demolition waste indicators, Waste Manag. Res. 31 (2013) 241–255. https://doi.org/10.1177/0734242X12471707.
  • M. Ulucan, K.E. Alyamaç, Geri Dönüşüm Agregalı Betonların Erken Yaş Dayanımlarını Tahmin Eden Matematiksel Modellerin Geliştirilmesi, J. Inst. Sci. Technol. 13 (2023) 399–405. https://doi.org/10.21597/jist.1174470.
  • M. Ulucan, K.E. Alyamaç, Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilim. Derg. 23 (2023) 438–447. https://doi.org/10.35414/akufemubid.1133802.
  • W. Xing, V.W.Y. Tam, K.N. Le, J.L. Hao, J. Wang, Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials, Resour. Conserv. Recycl. 193 (2023) 106947. https://doi.org/10.1016/j.resconrec.2023.106947.
  • M. Shmlls, M.A. Abed, T. Horvath, D. Bozsaky, Sustainability framework of recycled aggregate concrete produced with supplementary cementitious materials, Ain Shams Eng. J. 14 (2023) 102036. https://doi.org/10.1016/j.asej.2022.102036.
  • M. Ulucan, G. Yildirim, B. Alatas, K.E. Alyamac, A new intelligent sunflower optimization based explainable artificial intelligence approach for early‐age concrete compressive strength classification and mixture design of RAC, Struct. Concr. (2023). https://doi.org/10.1002/suco.202300138.
  • K.A. Knight, P.R. Cunningham, S.A. Miller, Optimizing supplementary cementitious material replacement to minimize the environmental impacts of concrete, Cem. Concr. Compos. 139 (2023) 105049. https://doi.org/10.1016/j.cemconcomp.2023.105049.
  • M. Ulucan, Y. Tas, K.E. Alyamac, Multi‐objective optimization and assessment of recycled concrete aggregates for sustainable development: Example of the Kömürhan bridge, Struct. Concr. (2023). https://doi.org/10.1002/suco.202201018.
  • B. Bennett, P. Visintin, T. Xie, Global warming potential of recycled aggregate concrete with supplementary cementitious materials, J. Build. Eng. 52 (2022) 104394. https://doi.org/10.1016/j.jobe.2022.104394.
  • M. Ulucan, K.E. Alyamac, A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental, Waste Manag. 146 (2022) 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • J.K. Shrestha, Assessment of energy demand and greenhouse gas emissions in low rise building systems: Case study of five building systems built after the Gorkha Earthquake in Nepal, J. Build. Eng. 34 (2021) 101831. https://doi.org/10.1016/j.jobe.2020.101831.
  • S. Marinković, J. Dragaš, I. Ignjatović, N. Tošić, Environmental assessment of green concretes for structural use, J. Clean. Prod. 154 (2017) 633–649. https://doi.org/10.1016/j.jclepro.2017.04.015.
  • M. Wijayasundara, P. Mendis, R.H. Crawford, Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete, J. Clean. Prod. 166 (2017) 321–334. https://doi.org/10.1016/j.jclepro.2017.08.001.
  • M. Ulucan, K.E. Alyamac, An integrative approach of the use of recycled concrete aggregate in high‐rise buildings: example of the Elysium, Struct. Concr. 24 (2023) 3329–3350. https://doi.org/10.1002/suco.202200512.
  • X. Sun, Y. Liu, Y. Li, S. Chai, H. Zhang, Y. Liu, G. Zhao, J. Li, T. Xu, Y. Wei, Environmental sustainability analysis of dairy bedding regeneration system based on emergy evaluation and life cycle assessment methods, Environ. Sci. Pollut. Res. (2022) 1–12. https://doi.org/10.1007/s11356-022-23525-4.
  • G. Kumar, R.C. Gupta, S. Shrivastava, Sustainable Zero-Slump Concrete Containing Recycled Aggregates from Construction and Demolition Waste of a 63-Year-Old Demolished Building, J. Mater. Civ. Eng. 34 (2022) 4022115.
  • M. Ulucan, K.E. Alyamac, A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material, Environ. Sci. Pollut. Res. 30 (2023) 97765–97785. https://doi.org/10.1007/s11356-023-29197-y.
  • F. Farmani, P. Khadiv-Parsi, A.A. Ramezanianpour, B. Bonakdarpour, F. Yazdian, Dual eco-friendly application of silica fume and scoria in cement-based materials through the enhancement of microbially-induced carbonate precipitation, Case Stud. Constr. Mater. (2022) e01481.
  • T. Demir, M. Ulucan, K.E. Alyamaç, Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes, Processes. 11 (2023) 673. https://doi.org/10.3390/pr11030673.
  • B. Demirel, E. Gultekin, K.E. Alyamac, Performance of structural lightweight concrete containing metakaolin after elevated temperature, KSCE J. Civ. Eng. 23 (2019) 2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
  • K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod. 144 (2017) 192–202.
  • A. Habibi, A.M. Ramezanianpour, M. Mahdikhani, RSM-based optimized mix design of recycled aggregate concrete containing supplementary cementitious materials based on waste generation and global warming potential, Resour. Conserv. Recycl. 167 (2021) 105420. https://doi.org/10.1016/j.resconrec.2021.105420.

Development of Numerical Model to Predict Fresh Concrete Properties of Waste Concrete Produced Using Earthquake Demolition Wastes and Fly Ash

Yıl 2024, Cilt: 36 Sayı: 1, 193 - 199, 28.03.2024
https://doi.org/10.35234/fumbd.1373775

Öz

This study aims to develop a numerical model to predict the fresh concrete properties of waste concrete produced using earthquake demolition wastes and fly ash with high accuracy. For this purpose, a series of 24 waste concretes with different cement dosages, water-to-cement ratios, and fly ash replacement ratios were produced. Slump tests were performed on the produced concrete series to determine the fresh concrete properties. Considering the obtained slump values and mix quantities, statistical analyses were performed on the response surface method, and a numerical model was developed. The coefficient of determination of the developed model is 0.97, and the prediction results are quite good. At the same time, it is thought that the use of fly ash as a supplementary cementitious material by replacing cement with fly ash and the use of earthquake demolition wastes as coarse aggregate provides great advantages in terms of sustainable development and circular economy.

Kaynakça

  • T. Ding, J. Xiao, Estimation of building-related construction and demolition waste in Shanghai, Waste Manag. 34 (2014) 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029.
  • M. Mália, J. de Brito, M.D. Pinheiro, M. Bravo, Construction and demolition waste indicators, Waste Manag. Res. 31 (2013) 241–255. https://doi.org/10.1177/0734242X12471707.
  • M. Ulucan, K.E. Alyamaç, Geri Dönüşüm Agregalı Betonların Erken Yaş Dayanımlarını Tahmin Eden Matematiksel Modellerin Geliştirilmesi, J. Inst. Sci. Technol. 13 (2023) 399–405. https://doi.org/10.21597/jist.1174470.
  • M. Ulucan, K.E. Alyamaç, Farklı Oranlarda Geri Dönüşümlü Beton Agregaları Kullanılarak Üretilen Betonların Çevresel Etki Değerlendirmelerinin Yapılması, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilim. Derg. 23 (2023) 438–447. https://doi.org/10.35414/akufemubid.1133802.
  • W. Xing, V.W.Y. Tam, K.N. Le, J.L. Hao, J. Wang, Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials, Resour. Conserv. Recycl. 193 (2023) 106947. https://doi.org/10.1016/j.resconrec.2023.106947.
  • M. Shmlls, M.A. Abed, T. Horvath, D. Bozsaky, Sustainability framework of recycled aggregate concrete produced with supplementary cementitious materials, Ain Shams Eng. J. 14 (2023) 102036. https://doi.org/10.1016/j.asej.2022.102036.
  • M. Ulucan, G. Yildirim, B. Alatas, K.E. Alyamac, A new intelligent sunflower optimization based explainable artificial intelligence approach for early‐age concrete compressive strength classification and mixture design of RAC, Struct. Concr. (2023). https://doi.org/10.1002/suco.202300138.
  • K.A. Knight, P.R. Cunningham, S.A. Miller, Optimizing supplementary cementitious material replacement to minimize the environmental impacts of concrete, Cem. Concr. Compos. 139 (2023) 105049. https://doi.org/10.1016/j.cemconcomp.2023.105049.
  • M. Ulucan, Y. Tas, K.E. Alyamac, Multi‐objective optimization and assessment of recycled concrete aggregates for sustainable development: Example of the Kömürhan bridge, Struct. Concr. (2023). https://doi.org/10.1002/suco.202201018.
  • B. Bennett, P. Visintin, T. Xie, Global warming potential of recycled aggregate concrete with supplementary cementitious materials, J. Build. Eng. 52 (2022) 104394. https://doi.org/10.1016/j.jobe.2022.104394.
  • M. Ulucan, K.E. Alyamac, A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental, Waste Manag. 146 (2022) 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • J.K. Shrestha, Assessment of energy demand and greenhouse gas emissions in low rise building systems: Case study of five building systems built after the Gorkha Earthquake in Nepal, J. Build. Eng. 34 (2021) 101831. https://doi.org/10.1016/j.jobe.2020.101831.
  • S. Marinković, J. Dragaš, I. Ignjatović, N. Tošić, Environmental assessment of green concretes for structural use, J. Clean. Prod. 154 (2017) 633–649. https://doi.org/10.1016/j.jclepro.2017.04.015.
  • M. Wijayasundara, P. Mendis, R.H. Crawford, Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete, J. Clean. Prod. 166 (2017) 321–334. https://doi.org/10.1016/j.jclepro.2017.08.001.
  • M. Ulucan, K.E. Alyamac, An integrative approach of the use of recycled concrete aggregate in high‐rise buildings: example of the Elysium, Struct. Concr. 24 (2023) 3329–3350. https://doi.org/10.1002/suco.202200512.
  • X. Sun, Y. Liu, Y. Li, S. Chai, H. Zhang, Y. Liu, G. Zhao, J. Li, T. Xu, Y. Wei, Environmental sustainability analysis of dairy bedding regeneration system based on emergy evaluation and life cycle assessment methods, Environ. Sci. Pollut. Res. (2022) 1–12. https://doi.org/10.1007/s11356-022-23525-4.
  • G. Kumar, R.C. Gupta, S. Shrivastava, Sustainable Zero-Slump Concrete Containing Recycled Aggregates from Construction and Demolition Waste of a 63-Year-Old Demolished Building, J. Mater. Civ. Eng. 34 (2022) 4022115.
  • M. Ulucan, K.E. Alyamac, A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material, Environ. Sci. Pollut. Res. 30 (2023) 97765–97785. https://doi.org/10.1007/s11356-023-29197-y.
  • F. Farmani, P. Khadiv-Parsi, A.A. Ramezanianpour, B. Bonakdarpour, F. Yazdian, Dual eco-friendly application of silica fume and scoria in cement-based materials through the enhancement of microbially-induced carbonate precipitation, Case Stud. Constr. Mater. (2022) e01481.
  • T. Demir, M. Ulucan, K.E. Alyamaç, Development of Combined Methods Using Non-Destructive Test Methods to Determine the In-Place Strength of High-Strength Concretes, Processes. 11 (2023) 673. https://doi.org/10.3390/pr11030673.
  • B. Demirel, E. Gultekin, K.E. Alyamac, Performance of structural lightweight concrete containing metakaolin after elevated temperature, KSCE J. Civ. Eng. 23 (2019) 2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
  • K.E. Alyamac, E. Ghafari, R. Ince, Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod. 144 (2017) 192–202.
  • A. Habibi, A.M. Ramezanianpour, M. Mahdikhani, RSM-based optimized mix design of recycled aggregate concrete containing supplementary cementitious materials based on waste generation and global warming potential, Resour. Conserv. Recycl. 167 (2021) 105420. https://doi.org/10.1016/j.resconrec.2021.105420.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm MBD
Yazarlar

Muhammed Ulucan 0000-0001-7629-6846

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 10 Ekim 2023
Kabul Tarihi 14 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 1

Kaynak Göster

APA Ulucan, M. (2024). Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(1), 193-199. https://doi.org/10.35234/fumbd.1373775
AMA Ulucan M. Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2024;36(1):193-199. doi:10.35234/fumbd.1373775
Chicago Ulucan, Muhammed. “Deprem Yıkıntı Atıkları Ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36, sy. 1 (Mart 2024): 193-99. https://doi.org/10.35234/fumbd.1373775.
EndNote Ulucan M (01 Mart 2024) Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36 1 193–199.
IEEE M. Ulucan, “Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, ss. 193–199, 2024, doi: 10.35234/fumbd.1373775.
ISNAD Ulucan, Muhammed. “Deprem Yıkıntı Atıkları Ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 36/1 (Mart 2024), 193-199. https://doi.org/10.35234/fumbd.1373775.
JAMA Ulucan M. Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36:193–199.
MLA Ulucan, Muhammed. “Deprem Yıkıntı Atıkları Ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, c. 36, sy. 1, 2024, ss. 193-9, doi:10.35234/fumbd.1373775.
Vancouver Ulucan M. Deprem Yıkıntı Atıkları ve Uçucu Kül Kullanılarak Üretilen Atık Betonların Taze Beton Özelliklerini Tahmin Eden Sayısal Model Geliştirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2024;36(1):193-9.