Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi

Yıl 2024, Cilt: 39 Sayı: 3, 1365 - 1374, 20.05.2024
https://doi.org/10.17341/gazimmfd.1161239

Öz

Bir iş süreci yönetim tekniği olan süreç madenciliğinin sağlık alanında uygulamaları her geçen gün artmaktadır. Süreç madenciliğinde, bilgi sistemlerinde kaydedilen olay günlüklerinden hareketle sürecin keşfedilmesi, uygunluk kontrolü ve süreç iyileştirme olmak üzere üç temel amaçla, süreci analiz etmek mümkün olmaktadır. İnsan odaklı, dağıtık, karmaşık ve çok disiplinli sağlık süreçleri verisine süreç madenciliği tekniklerini uygulamak ve sağlık hizmetlerinin kalitesini arttırmak için hasta tabanlı sağlık süreçleri verisinin süreç ve olay tabanlı olay günlüğüne dönüştürülmesi, bir süreç madenciliği projesinin ilk adımıdır. Çok perspektifli süreç madenciliğinde keşfedilen süreç modeli kontrol akışı, örgütsel, veri, zaman ve fonksiyona gibi farklı perspektiflerden genişletilerek, keşfedilen süreç daha anlamlı hale gelmektedir. Bu çalışmada ve çok perspektifli süreç madenciliği uygulamak adına hastane bilgi sistemlerinde dağıtık olarak kaydedilen sağlık süreçleri verisini olay günlüğüne dönüştürme için bir yöntem önerilmiştir. Veri dönüştürme yöntemi; veri toplama ve veri güvenliği, verinin bütünleştirilmesi, veri dönüştürme, veri ön işleme, özellik seçimi ve çıkarımı ve çok perspektifli süreç madenciliği analizi olmak üzere altı adımdan oluşmaktadır. Türkiye’deki bir üniversite hastanesine ait ameliyat süreci verisi, olay günlüğüne dönüştürülerek yapılan durum çalışması ile önerilen yöntem doğrulanmıştır. Durum çalışmasına ait ameliyat süreci verisine süreç keşfi algoritması uygulanmış ve gerçekleşen süreç keşfedilmiş, veri dönüştürme yönteminin uygulanabilirliği gerçek veri üzerinde gösterilmiştir. Yöntemin sağlık profesyonelleri için yol gösterici özelliği ile, çok perspektifli süreç madenciliğinin Türkiye’de sağlık alanındaki uygulamalarına katkıda bulunması beklenmektedir.

Kaynakça

  • 1. Aalst, W. M. P., Process Mining: Data Science in Action, Springer, Heidelberg, 2016.
  • 2. Aalst, W. M. P., Adriansyah A., Medeiros A. K. A. D., Arcieri, F., Baier T., and T. B. et al., Process mining manifesto, Business Process Management (BPM) Workshops: 2011 International Workshops, Clermont-Ferrand-France, 169–194, 2012.
  • 3. Munoz-Gama J. et al., Process mining for healthcare: Characteristics and challenges, J Biomed Inform, 127, 103994, 2022.
  • 4. E. De Roock and N. Martin, Process mining in healthcare – An updated perspective on the state of the art, J Biomed Inform, 127, 103995, 2022.
  • 5. Man’s R. S., Aalst W. M. P. Van Der, and Vanwersch R. J. B., Process Mining in Healthcare Evaluating and Exploiting Operational Healthcare Processes, 1-91, Springer International Publishing, Heidelberg, 2015.
  • 6. Erdogan T. and Tarhan A., Systematic Mapping of Process Mining Studies in Healthcare, IEEE Access, 6, 24543-24567, 2018.
  • 7. Mannhardt F., Multi-perspective Process Mining, Doktora tezi, Eindhoven Teknoloji Üniversitesi, Matematik ve Bilgisayar Bilimleri, 2018.
  • 8. Peterson J., Petri Net Theory and the Modeling of Systems, Prentice Hall, NJ, A.B.D., 1981.
  • 9. Weijters A. J. M. M. and Ribeiro J. T. S., Flexible heuristics miner (FHM), IEEE symposium on computational intelligence and data mining (CIDM), Paris-Fransa, 310-317, 2011.
  • 10. Günther CW. and W. Van Der Aalst, Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics, Business Process Management - Lecture Notes in Computer Science, 4714, 328–343, 2007.
  • 11. Object Management Group (OMG), Business Process Model and Notation (BPMN) Version 2.0, www.omg.org/spec/BPMN/2.0.2/, 2013, Erişim Tarihi Aralık 12, 2023.
  • 12. Leoni M. De and Aalst W. M. P. Van Der, Data-aware process mining: Discovering decisions in processes using alignments, Proceedings of the ACM Symposium on Applied Computing, 1454–1461, 2013.
  • 13. Leemans S. J. J., Fahland D., and Aalst W. M. P. Van Der, Process and deviation exploration with inductive visual miner, 12th International Conference on Business Process Management, İsrail, 1295, 46–50, 2014.
  • 14. Doğan O., Overview of Process Mining: Alpha Algorithm for Process Flow Discovery, Pamukkale University Journal of Engineering Sciences, 26 (5), 966–973, 2020.
  • 15. Man’s R., Schonenberg M., Song M., Aalst W. Van der, and Bakker P., Application of process mining in healthcare – A case study in a Dutch hospital, International Joint Conference on Biomedical Engineering Systems and Technologies, Portekiz, 425–438, 2008.
  • 16. Orellana Garcia A., Perez Ramirez Y. E., and Armenteros Larrea O. U., Process Mining in Healthcare: Analysis and Modeling of Processes in the Emergency Area, IEEE Latin America Transactions, 13, 5, 1612–1618, 2015.
  • 17. Rovani M., Maggi F. M. Maggi, Leoni M. de, and Aalst W. M. P. van der, Declarative process mining in healthcare, Expert Syst Appl, 42, 23, 9236–9251, 2015.
  • 18. Delias P., Doumpos M., Grigoroudis E., Manolitzas P., and Matsatsinis N., Supporting healthcare management decisions via robust clustering of event logs, Knowl Based Syst, 84, 203–213, 2015.
  • 19. Erdogan T. G. and Tarhan A., A goal-driven evaluation method based on process mining for healthcare processes, Applied Sciences (Switzerland), 8, 6, 2018.
  • 20. Rebuge Á. and Ferreira D., Business process analysis in healthcare environments: A methodology based on process mining, Information Systems, 37, 2012.
  • 21. Eck M. L. Van, Lu X., Leemans S. J. J., and Aalst W. M. P. Van Der, PM 2 : a Process Mining Project Methodology, International conference on advanced information systems engineering, 297-313, Cham: Springer International Publishing, 2015.
  • 22. Erdogan T. G. and Tarhan A. K., Multi-perspective Process Mining for Emergency Process, Health Informatics J, 1–18, 2022.
  • 23. Tiftik M. N., Erdogan T. Gurgen, and Kolukisa Tarhan A., A framework for multi-perspective process mining into a BPMN process model, Mathematical Biosciences and Engineering, 19, 11, 11800–11820, 2022.
  • 24. Ekici B., Erdogan T. G., and KoukisaTarhan A. K., BPMN Data Model for Multi-Perspective Process Mining on Blockchain, International Journal of Software Engineering and Knowledge Engineering, 1–29, 2022.
  • 25. Yin R. K., Case Study Research. Design and Methods, 5, 2009.
  • 26. Runeson P. and Höst M., Guidelines for conducting and reporting case study research in software engineering, Empir Softw Eng, 14 (2), 131–164, 2009.
  • 27. Process Mining Group, ProM - the leading process mining toolkit, 2014, Erişim Tarihi Aralık 12, 2023.
  • 28. Process Mining and Automated Process Discovery Software for Professionals - Fluxicon Disco, Erişim Tarihi Aralık 12, 2023.
  • 29. A. Berti, S. J. Van Zelst, W. M. P. Van Der Aalst, and F. Gesellschaf, Process mining for python (PM4py): Bridging the gap between process- And data science, CEUR Workshop Proc, 2374, 13–16, 2019.
  • 30. About Celonis | The Leader & Innovator in Process Mining. https://www.celonis.com/company/, Erişim Tarihi Aralık 12, 2023.
  • 31. Janssenswillen G., Depaire B., Swennen M., Jans M., and Vanhoof K., bupaR: Enabling reproducible business process analysis, Knowl Based Syst, 163, 927–930, 2019.
  • 32. Suriadi S., Ouyang C., Aalst W. M. P. Van Der, and Hofstede A. H. M., Root cause analysis with enriched process logs, Lecture Notes in Business Information Processing, 132 LNBIP (January), 174–186, 2013.
  • 33. Mannhardt F., Leoni M. De, and Reijers H. A., The multi-perspective process explorer, CEUR Workshop Proc, 1418, 130–134, 2015.
  • 34. Reijers F. Mannhardt and Blinde D., Analyzing the trajectories of patients with sepsis using process mining, CEUR Workshop Proc, 1859, 72–80, 2017.
  • 35. Aalst Wil M. P. van der, Process Mining Handbook, in Lecture Notes in Business Information Processing, 448, Cham: Springer International Publishing, 448, 2022.
  • 36. Erdogan T. G., A Performance Analysis Method for Healthcare Process Improvement Using Process Mining Technique, Doktora tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2018.
  • 37. IEEE Task Force on Process Mining, Process Mining Manifesto, Business Process Management Workshops, 169–194, 2011.
  • 38. Dunkl R., Fröschl K., Grossmann W., and Rinderle-Ma S., Assessing medical treatment compliance based on formal process modeling, in Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society (USAB), 533–546, 2011.
  • 39. Masic I., Miokovic M., and Muhamedagic B., Evidence Based Medicine – New Approaches and Challenges, 16 (4), 219–225, 2008.
  • 40. Man’s R. S., Aalst W. M. P. Van Der, Vanwersch R. J. B., and Moleman A. J., Process Mining in Healthcare: Data Challenges when Answering Frequently Posed Questions. International Workshop on Process-oriented Information Systems in Healthcare, 140-153, Berlin Heidelberg, Springer, 2012.
  • 41. Senderovich A. et al., Conformance checking and performance improvement in scheduled processes: A queueing-network perspective, Inf Syst, 62, 185–206, 2016.
  • 42. Delias P., Manolitzas P., Grigoroudis E., and Matsatsinis N., Applying process mining to the emergency department, in Encyclopedia of Business Analytics and Optimization, 168–178, 2014.
  • 43. Ekici B., A BPMN Data Model to Keep a Multi-Perspective Process Model on the Blockchain, Master tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • 44. Pika A., Wynn M. T., Budiono S., Hofstede A. H. M. T., Aalst W. M. P. van der, and Reijers H. A., Privacy-preserving process mining in healthcare,”Int J Environ Res Public Health, 17 (5), 2020.
  • 45. E. Rojas et al., PALIA-ER: Bringing question-driven process mining closer to the emergency room, CEUR Workshop Proc, 1920, 1–5, 2017.
  • 46. Zaeem R. N. and Barber K. S., The Effect of the GDPR on Privacy Policies, ACM Trans Manag Inf Syst, 12 (1), 2021.
  • 47. Gökçay B. and Arda B., Ethical overview of health research with regard to the protection of personal health data_net Kisisel saglik verilerinin korunmasi kapsaminda saglik arastirmalarinda etik bakis, Turk Kardiyoloji Dernegi Arsivi, 47 (3), 218–227, 2019.
  • 48. García Salvador J. and Luengo H. F., Data Preparation Basic Models, in Data Preprocessing in Data Mining, Cham: Springer International Publishing, 39–57, 2015.
  • 49. Gökdemir A. and Çalhan A., Deep learning and machine learning based anomaly detection in internet of things environments, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1945-1956, 2022.
  • 50. Aci M. and Doǧansoy G. A., Demand forecasting for e-retail sector using machine learning and deep learning methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 7 (3), 1325–1339, 2022.
  • 51. Marin-Castro H. M. and Tello-Leal E., Event log preprocessing for process mining: A review, Applied Sciences (Switzerland), 11 (22), MDPI, N2021.
  • 52. Bluma A. L. and Langley P., Artificial Intelligence Selection of relevant features and examples in machine, 1997.
  • 53. Guyon I., Gunn S., Nikravesh M., and Zadeh L., Feature Extraction Foundations and Applications, 2006.
  • 54. Zandkarimi F., Rehse J. R., Soudmand P., and Hoehle H., A generic framework for trace clustering in process mining, in Proceedings - 2020 2nd International Conference on Process Mining (ICPM), 177–184, 2020.
  • 55. Khalid S., Khalil T., and Nasreen S., A survey of feature selection and feature extraction techniques in machine learning, Proceedings of 2014 Science and Information Conference, 372–378, 2014.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tugba Gurgen Erdogan 0000-0002-9057-7369

Erken Görünüm Tarihi 19 Ocak 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 12 Ağustos 2022
Kabul Tarihi 23 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Gurgen Erdogan, T. (2024). Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1365-1374. https://doi.org/10.17341/gazimmfd.1161239
AMA Gurgen Erdogan T. Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi. GUMMFD. Mayıs 2024;39(3):1365-1374. doi:10.17341/gazimmfd.1161239
Chicago Gurgen Erdogan, Tugba. “Çok Perspektifli süreç madenciliği sağlık Uygulamaları için Bir Veri dönüştürme yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1365-74. https://doi.org/10.17341/gazimmfd.1161239.
EndNote Gurgen Erdogan T (01 Mayıs 2024) Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1365–1374.
IEEE T. Gurgen Erdogan, “Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi”, GUMMFD, c. 39, sy. 3, ss. 1365–1374, 2024, doi: 10.17341/gazimmfd.1161239.
ISNAD Gurgen Erdogan, Tugba. “Çok Perspektifli süreç madenciliği sağlık Uygulamaları için Bir Veri dönüştürme yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1365-1374. https://doi.org/10.17341/gazimmfd.1161239.
JAMA Gurgen Erdogan T. Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi. GUMMFD. 2024;39:1365–1374.
MLA Gurgen Erdogan, Tugba. “Çok Perspektifli süreç madenciliği sağlık Uygulamaları için Bir Veri dönüştürme yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1365-74, doi:10.17341/gazimmfd.1161239.
Vancouver Gurgen Erdogan T. Çok perspektifli süreç madenciliği sağlık uygulamaları için bir veri dönüştürme yöntemi. GUMMFD. 2024;39(3):1365-74.