Review
BibTex RIS Cite

Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR

Year 2022, Volume: 11 Issue: 2, 286 - 298, 11.11.2022

Abstract

LiDAR tekniklerindeki gelişmeler, hava platformlarından arazi topoğrafyası ölçmelerinde geleneksel lineer-mode LiDAR (LML) yöntemine alternatif olarak, Geiger-mode LiDAR (GML) ve tekli-foton LiDAR (Single-Photon LiDAR) yöntemlerini ortaya çıkarmıştır. Geleneksel LML çoklu foton kaydı ile mesafe ölçerken, GML ve SPL tek bir foton ile mesafe ölçer ve foton sayma LiDAR olarak isimlendirilirler. Bu yeni LiDAR teknikleri ile daha geniş alanlar kısa sürede ve düşük maliyetle ölçülebilmektedir. LiDAR ölçme verisi temel olarak sayısal yükseklik bilgisi içerir. Farklı LiDAR ölçme teknikleri bunlara ilave olarak yansıma değeri ve çoklu dönüş sinyallerini de kaydeder. Bu durum, açık arazi, bina ve bitki örtüsü ile kaplı alanlarda LiDAR ölçmelerinde farklılıklar oluşturur. Örneğin, çoklu dönüş sinyalleri kaydedilen LiDAR verisinden ağaç yükseklikleri belirlenebilirken, tek dönüş sinyali kaydedilen LiDAR verisinde bu mümkün değildir. Bu çalışmada LML ve foton sayma GML ve SPL teknikleri incelenmiştir. LiDAR tekniklerinin detayları verildikten sonra üstün ve zayıf özelliklerine vurgu yapılmıştır.

References

  • Aull, B., 2016. Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits. Sensors, 16(4), 495, https://doi.org/10.3390/s16040495.
  • Chen, Z., Liu, C., Wu, H., 2019. A higher-order tensor voting-based approach for road junction detection and delineation from airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 91-114, https://doi.org/10.1016/j.isprsjprs.2019.02.003.
  • Domlija, P., Bernat Gazibara, P., Arbanas, Z., Mihalic Arbanas, S., 2019. Identification and mapping of soil erosion processes using the visual interpretation of LiDAR imagery. ISPRS Int. J. Geo-Inf., 8, 438, https://doi.org/10.3390/ijgi8100438.
  • Fernandez, T., Pérez-Garcia, J.L., Gómez-Lopez, J. M., Cardenal, J., Calero, J., Sanchez-Gomez, M., Delgado, J., Tovar-Pescador, J., 2020. Multitemporal analysis of gully erosion in olive groves by means of digital elevation models obtained with aerial photogrammetric and LiDAR data. ISPRS Int. J. Geo-Inf., 9, 260, https://doi.org/10.3390/ijgi9040260.
  • Hao, Q., Tao, Y., Cao, J., Cheng, Y. 2021. Development of pulsed-laser three-dimensional imaging flash LiDAR using APD arrays. Microw. Opt. Technol. Lett. 63, 2492-2509, https://doi.org/10.1002/mop.32978.
  • Kaasalainen, S., Malkamaki, T., 2020. Potential of active multispectral LiDAR for detecting low reflectance targets. Optics Express, 28(2), 1408-1416, https://doi.org/10.1364/OE.379491.
  • Lyu, X., Hao, M, Shi, W., 2020. Building change detection using a shape context similarity model for LiDAR data. ISPRS Int. J. Geo-Inf., 9, 678, https://doi.org/10.3390/ijgi9110678.
  • L3HARRIS, 2022. https://www.l3harris.com/all- capabilities/geiger-mode-lidar [Erişim: 7 Nisan 2022]
  • Mandlburger, G., Jutzi, B., 2019. On the feasibility of water surface mapping with single photon LiDAR. ISPRS Int. J. Geo-Inf., 8, 188, https://doi.org/10.3390/ijgi8040188.
  • Mandlburger, G., Lehner, H., Pfeifer, N., 2019. A comparison of single photon and full waveform LiDAR. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. IV-2/W5, 397-404, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019.
  • McManamon, P.F., Banks, P., Beck, J., Fried, D.G. Huntington, A.S., Watson, E.A., 2017. Comparison of flash LiDAR detector options. Optical Engineering, 56(3), 031223, https://doi.org/10.1117/1.OE.56.3.031223. Okhrimenko, M., Coburn, C., Hopkinson, C., 2019. Multi-spectral LiDAR: Radiometric calibration, canopy spectral reflectance, and vegetation vertical SVI profiles. Remote Sensing, 11, 1556, https://doi.org/10.3390/rs11131556.
  • Roelens, J., Höfle, B., Dondeyne, S., Orshoven, J.V., Diels, J., 2018. Drainage ditch extraction from airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 409-420, https://doi.org/10.1016/j.isprsjprs.2018.10.014.
  • Shaker, A., Yan, W.Y., LaRocque, P.E., 2019. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 94-108, https://doi.org/10.1016/j.isprsjprs.2019.04.005.
  • Sparks, A.M., Smith, A.M.S., 2022. Accuracy of a LiDAR-Based Individual Tree Detection and Attribute Measurement Algorithm Developed to Inform Forest Products Supply Chain and Resource Management. Forests, 13(1), 3, https://doi.org/10.3390/f13010003.
  • Stanley, M.H., Laefer, D.F., 2021. Metrics for aerial, urban LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 268-281, https://doi.org/10.1016/j.isprsjprs.2021.01.010.
  • Stoker, J.M., Abdullah, Q.A., Nayegandhi, A., Winehouse, J., 2016. Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program. Remote Sensing, 8, 767, https://doi.org/10.3390/rs8090767.
  • Terrone, M., Piana, P., Paliaga, G., Orazi, M.D., Faccini, F., 2021. Coupling historical maps and LiDAR data to identify man-made landforms in urban areas. ISPRS Int. J. Geo-Inf., 10, 349, https://doi.org/10.3390/ijgi10050349.
  • Ulrich, A., Pfennigbauer, M., 2016. Linear LIDAR versus Geiger-mode LIDAR: Impact on data properties and data quality. Proc. of SPIE Vol. 9832, 983204. doi: 10.1117/12.2223586
  • Yan, W.Y., Ewijk, K.V., Treitz, P., Shaker, A., 2020. Effects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 152-165, https://doi.org/10.1016/j.isprsjprs.2020.09.001.
  • Yu, X., Kukko, A., Kaartinen, H., Wang, Y., Liang, X., Matikainen, L., Hyyppa, J., 2020. Comparing features of single and multi-photon LiDAR in boreal forests. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 268-276, https://doi.org/10.1016/j.isprsjprs.2020.08.013.
Year 2022, Volume: 11 Issue: 2, 286 - 298, 11.11.2022

Abstract

References

  • Aull, B., 2016. Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits. Sensors, 16(4), 495, https://doi.org/10.3390/s16040495.
  • Chen, Z., Liu, C., Wu, H., 2019. A higher-order tensor voting-based approach for road junction detection and delineation from airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 91-114, https://doi.org/10.1016/j.isprsjprs.2019.02.003.
  • Domlija, P., Bernat Gazibara, P., Arbanas, Z., Mihalic Arbanas, S., 2019. Identification and mapping of soil erosion processes using the visual interpretation of LiDAR imagery. ISPRS Int. J. Geo-Inf., 8, 438, https://doi.org/10.3390/ijgi8100438.
  • Fernandez, T., Pérez-Garcia, J.L., Gómez-Lopez, J. M., Cardenal, J., Calero, J., Sanchez-Gomez, M., Delgado, J., Tovar-Pescador, J., 2020. Multitemporal analysis of gully erosion in olive groves by means of digital elevation models obtained with aerial photogrammetric and LiDAR data. ISPRS Int. J. Geo-Inf., 9, 260, https://doi.org/10.3390/ijgi9040260.
  • Hao, Q., Tao, Y., Cao, J., Cheng, Y. 2021. Development of pulsed-laser three-dimensional imaging flash LiDAR using APD arrays. Microw. Opt. Technol. Lett. 63, 2492-2509, https://doi.org/10.1002/mop.32978.
  • Kaasalainen, S., Malkamaki, T., 2020. Potential of active multispectral LiDAR for detecting low reflectance targets. Optics Express, 28(2), 1408-1416, https://doi.org/10.1364/OE.379491.
  • Lyu, X., Hao, M, Shi, W., 2020. Building change detection using a shape context similarity model for LiDAR data. ISPRS Int. J. Geo-Inf., 9, 678, https://doi.org/10.3390/ijgi9110678.
  • L3HARRIS, 2022. https://www.l3harris.com/all- capabilities/geiger-mode-lidar [Erişim: 7 Nisan 2022]
  • Mandlburger, G., Jutzi, B., 2019. On the feasibility of water surface mapping with single photon LiDAR. ISPRS Int. J. Geo-Inf., 8, 188, https://doi.org/10.3390/ijgi8040188.
  • Mandlburger, G., Lehner, H., Pfeifer, N., 2019. A comparison of single photon and full waveform LiDAR. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. IV-2/W5, 397-404, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019.
  • McManamon, P.F., Banks, P., Beck, J., Fried, D.G. Huntington, A.S., Watson, E.A., 2017. Comparison of flash LiDAR detector options. Optical Engineering, 56(3), 031223, https://doi.org/10.1117/1.OE.56.3.031223. Okhrimenko, M., Coburn, C., Hopkinson, C., 2019. Multi-spectral LiDAR: Radiometric calibration, canopy spectral reflectance, and vegetation vertical SVI profiles. Remote Sensing, 11, 1556, https://doi.org/10.3390/rs11131556.
  • Roelens, J., Höfle, B., Dondeyne, S., Orshoven, J.V., Diels, J., 2018. Drainage ditch extraction from airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 409-420, https://doi.org/10.1016/j.isprsjprs.2018.10.014.
  • Shaker, A., Yan, W.Y., LaRocque, P.E., 2019. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 94-108, https://doi.org/10.1016/j.isprsjprs.2019.04.005.
  • Sparks, A.M., Smith, A.M.S., 2022. Accuracy of a LiDAR-Based Individual Tree Detection and Attribute Measurement Algorithm Developed to Inform Forest Products Supply Chain and Resource Management. Forests, 13(1), 3, https://doi.org/10.3390/f13010003.
  • Stanley, M.H., Laefer, D.F., 2021. Metrics for aerial, urban LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 268-281, https://doi.org/10.1016/j.isprsjprs.2021.01.010.
  • Stoker, J.M., Abdullah, Q.A., Nayegandhi, A., Winehouse, J., 2016. Evaluation of single photon and Geiger mode LiDAR for the 3D elevation program. Remote Sensing, 8, 767, https://doi.org/10.3390/rs8090767.
  • Terrone, M., Piana, P., Paliaga, G., Orazi, M.D., Faccini, F., 2021. Coupling historical maps and LiDAR data to identify man-made landforms in urban areas. ISPRS Int. J. Geo-Inf., 10, 349, https://doi.org/10.3390/ijgi10050349.
  • Ulrich, A., Pfennigbauer, M., 2016. Linear LIDAR versus Geiger-mode LIDAR: Impact on data properties and data quality. Proc. of SPIE Vol. 9832, 983204. doi: 10.1117/12.2223586
  • Yan, W.Y., Ewijk, K.V., Treitz, P., Shaker, A., 2020. Effects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 152-165, https://doi.org/10.1016/j.isprsjprs.2020.09.001.
  • Yu, X., Kukko, A., Kaartinen, H., Wang, Y., Liang, X., Matikainen, L., Hyyppa, J., 2020. Comparing features of single and multi-photon LiDAR in boreal forests. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 268-276, https://doi.org/10.1016/j.isprsjprs.2020.08.013.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Derleme Makaleler
Authors

Cihan Altuntaş

Early Pub Date October 31, 2022
Publication Date November 11, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Altuntaş, C. (2022). Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 11(2), 286-298.
AMA Altuntaş C. Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR. GBAD. November 2022;11(2):286-298.
Chicago Altuntaş, Cihan. “Hava LiDAR Teknikleri: Lineer LiDAR Ve Foton Sayma LiDAR”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11, no. 2 (November 2022): 286-98.
EndNote Altuntaş C (November 1, 2022) Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11 2 286–298.
IEEE C. Altuntaş, “Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR”, GBAD, vol. 11, no. 2, pp. 286–298, 2022.
ISNAD Altuntaş, Cihan. “Hava LiDAR Teknikleri: Lineer LiDAR Ve Foton Sayma LiDAR”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11/2 (November 2022), 286-298.
JAMA Altuntaş C. Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR. GBAD. 2022;11:286–298.
MLA Altuntaş, Cihan. “Hava LiDAR Teknikleri: Lineer LiDAR Ve Foton Sayma LiDAR”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 11, no. 2, 2022, pp. 286-98.
Vancouver Altuntaş C. Hava LiDAR Teknikleri: Lineer LiDAR ve Foton Sayma LiDAR. GBAD. 2022;11(2):286-98.