Research Article
BibTex RIS Cite

Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması

Year 2022, Volume: 7 Issue: 3, 253 - 260, 15.12.2022
https://doi.org/10.29128/geomatik.1017376

Abstract

Küresel ısınmaya bağlı olarak meydana gelen iklim değişikliği yağışların ve sıcaklıkların düzensizleşmesine sebep olmaktadır. Bu nedenle sosyoekonomik açıdan küresel ölçekte büyük öneme sahip kıyı alanlarında hızlı değişimler meydana gelmektedir. Kıyı alanlarındaki uzun süreli değişimlerin izlenmesi için kullanılan yöntemlerden birisi uzaktan algılama yöntemidir. NASA ve USGS tarafından sağlanan Landsat uydu misyonu sayesinde 1970 li yıllardan günümüze kadar düzenli multispektral veri temin edilebilmektedir. Yine NASA tarafından geliştirilen ve ArcGIS yazılımı üzerinden kullanılabilen DSAS aracı sayesinde kıyı çizgilerinin farklı tarihler arasındaki değişimleri izlenebilmekte ve değişim miktarları istatistiksel olarak analiz edilebilmektedir. Bu çalışmada Manisa ili sınırları içerisinde bulunan ve bir alüvyal set gölü olan Marmara Gölü’ne ait 1985-2020 arasındaki 5’er yıllık periyotlarda kıyı alanlarındaki değişimler incelenmiştir. 8 adet Landsat verisi üzerinden MNDWI ve nesne tabanlı sınıflandırma yöntemiyle kıyı çizgisi çıkarılmıştır. Çıkarılan kıyı çizgisi üzerinden DSAS ile erozyon ve dolgu miktarları belirlenerek istatistiksel yöntemlerle (EPR ve LRR) analiz edilmiştir. Çalışma sonucunda R2 ve Pearson's r yöntemine göre EPR ve LRR arasındaki korelasyon değerleri sırasıyla %94 ve %97 olarak hesaplanmıştır.

References

  • Ahmad SR & Lakhan VC (2012). GIS-based analysis and modeling of coastline advance and retreat along the coast of Guyana. Marine Geodesy, 35(1), 1-15.
  • Ali I, Cawkwell F, Dwyer E, Barrett B & Green S (2016). Satellite remote sensing of grasslands: from observation to management. Journal of Plant Ecology, 9(6), 649-671.
  • Ali PY & Narayana AC (2015). Short-term morphological and shoreline changes at Trinkat Island, Andaman and Nicobar, India, after the 2004 Tsunami. Marine Geodesy 38(1), 26–39.
  • Armah FA (2011). GIS-based assessment of short term Shoreline changes in the coastal erosion-sensitive zone of Accra, Ghana. Research Journal of Environmental Sciences, 5(7), 643-54.
  • Beşel C & Kayıkçı ET (2020). Investigation Of Black Sea Mean Sea Level Variability By Singular Spectrum Analysis. International Journal of Engineering and Geosciences, 5(1), 33-41.
  • Bevacqua A, Yu D & Zhang Y (2018). Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environmental Science & Policy, 82, 19-29.
  • Boak EH & Turner IL (2005). Shoreline definition and detection: A review. Journal of Coastal Research 21(4), 688–703.
  • Carr MH, Robinson SP, Wahle C, Davis G, Kroll S, Murray S, Schumacker EJ & Williams M (2017). The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 6-29.
  • Ciritci D & Turk T (2020). Assessment of the Kalman filter-based future shoreline prediction method. International Journal of Environmental Science and Technology, 17, 3801–3816.
  • Danforth WW & Thieler ER (1992). Digital Shoreline Analysis System (DSAS) user's guide; version 1.0 (No. 92-355). US Geological Survey.
  • Das B & Dhorde A (2015). Assessment of shoreline change and its relation with Mangrove vegetation: A case study over North Konkan region of Raigad, Maharashtra, India. International Journal of Engineering and Geosciences, 7(2), 101-111.
  • Dereli MA & Tercan E (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics, 13(3), 709-718.
  • Dewidar KM & Frihy OE (2010). Automated techniques for quantification of beach change rates using Landsat series along the North-eastern Nile Delta, Egypt. Journal of Oceanography and Marine Science, 1(2), 28-39.
  • Doygun H, Oğuz H, Atak BK & Nurlu E (2011). Alan Kullanım Değişimlerinin Doğal Karakterli Kıyı Alanları Üzerindeki Etkilerinin Uzaktan Algılama ve CBS Yardımıyla İncelenmesi: Çiğli/İzmir Örneği, I. Akdeniz Orman ve Çevre Sempozyumu, Kahramanmaraş.
  • Döker MF (2012). İstanbul İli Marmara Denizi Kıyı Çizgisinde Meydana Gelen Zamansal Değişimin Belirlenmesi. International Journal of Human Scienses, 9(2),1250-1369.
  • Geyer WR, Hill PS & Kineke GC (2004). The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research, 24(7-8), 927-949.
  • Ghorai D & Bhunia GS (2020). Automatic shoreline detection and its forecast: a case study on Dr. Abdul Kalam Island in the section of Bay of Bengal. Geocarto International, 1-20.
  • Glover C & Robertson A (1998). Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298(1-3), 103-132.
  • Gormsen E (1997). The impact of tourism on coastal areas. GeoJournal, 42(1), 39-54.
  • Gracy Margret Mary R, Sundar V & Sannasiraj SA (2020). Analysis of shoreline change between inlets along the coast of Chennai, India. Marine Georesources & Geotechnology, 1-10.
  • Guha S & Govil H (2021). Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. International Journal of Engineering and Geosciences, 6(3), 165-173.
  • Gül O (2008). Marmara Gölü (Manisa) kuş türleri populasyonlarının tespiti ve alanı etkileyen çevresel faktörlerin belirlenmesi üzerine araştırmalar [Researches on the determination of ornithofauna of and environmental factors affecting Marmara lake (Manisa, Turkey). Ege University, Institute of Science: M.Sc. Thesis
  • Hossain KT, Salauddin M & Tanim IA (2016). Assessment of the dynamics of coastal island in Bangladesh using geospatial techniques: Domar Char. Journal of the Asiatic Society of Bangladesh, Science, 42(2), 219-228.
  • İlhan A & Sarı HM (2011): Marmara Gölü balık faunası ve balıkçılık faaliyetleri. Ege Journal of Fisheries Aquatic Sciences, 30, 187–191.
  • Jana A, Maiti S & Biswas A (2017). Appraisal of long-term shoreline oscillations from a part of coastal zones of Sundarban delta, Eastern India: A study based on geospatial technology. Spatial Information Research, 25(5), 713-723.
  • Kermani S, Boutiba M, Guendouz M, Guettouche MS & Khelfani D (2016). Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of jijelian sandy coast (East Algeria). Ocean & coastal management, 132, 46-58.
  • Kireeva M, Frolova N, Rets E, Samsonov T, Entin A, Kharlamov M, Telegina E & Povalishnikova E (2020). Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period. International Journal of River Basin Management, 18(4), 491-502.
  • Kurt S, Karaburun A, Demirci A (2010). Coastline Changes in İstanbul Between 1987 and 2007. Scientific Research and Essays 5(19), 3009-3017.
  • Mahmoodi A, Lashteh Neshaei MA, Mansouri A & Shafai Bejestan M (2020). Study of current-and wave-induced sediment transport in the Nowshahr Port entrance channel by using numerical modeling and field measurements. Journal of Marine Science and Engineering, 8(4), 284.
  • Mitra SS, Santra A & Mitra D (2013). Change detection analysis of the shoreline using Toposheet and Satellite Image: A case study of the coastal stretch of Mandarmani-Shankarpur, West Bengal, India. International Journal of Geomatics and Geosciences, 3(3), 425.
  • Nassar K, Fath H, Mahmod WE, Masria A, Nadaoka K & Negm A (2018). Automatic detection of shoreline change: case of North Sinai coast, Egypt. Journal of Coastal Conservation. https://doi.org/10.1007/s11852-018-0613-1.
  • Nassar K, Mahmod WE, Fath H, Masria A, Nadaoka K & Negm A (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81-95.
  • Natesan U, Parthasarathy A, Vishnunath R, Kumar GEJ & Ferrer VA (2015). Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques. Aquatic Procedia, 4, 325-332.
  • Niya AK, Alesheikh AA, Soltanpor M & Kheirkhahzarkesh MM (2013). Shoreline change mapping using remote sensing and GIS. Int. J. Remote Sens. Appl., 3(3), 102-107.
  • Nor NAM, Tahar KN, Suprijo T & Sulaiman SAH (2020). Shoreline Changes Analysis Along the Coast of Kuala Terengganu, Malaysia using DSAS. In 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) (pp. 276-281).
  • Page SJ, Hartwell H, Johns N, Fyall A, Ladkin A & Hemingway A. (2017). Case study: Wellness, tourism and small business development in a UK coastal resort: Public engagement in practice. Tourism Management, 60, 466-477.
  • Peel MC, Finlayson BL & McMahon TA (2007): Updated world map of Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4, 1633–1644.
  • Phillips MR & Jones AL (2006). Erosion and tourism infrastructure in the coastal zone: Problems, consequences and management. Tourism Management, 27(3), 517-524.
  • Rahman SA, Islam MM, Salman MA & Rafiq MR (2022). Evaluating bank erosion and identifying possible anthropogenic causative factors of Kirtankhola River in Barishal, Bangladesh: an integrated GIS and Remote Sensing approaches. International Journal of Engineering and Geosciences, 7(2), 179-190.
  • Roy S & Mahmood R (2016). Monitoring shoreline dynamics using landsat an d hydrological data: a case study of Sandwip Island of Bangladesh. The Pennsylvania Geographer, 54(2), 20-41.
  • Sebat M & Salloum J (2018). Estimate the rate of shoreline change using the statistical analysis technique (Epr). Business & It, 8(1).
  • Şentürk E & Erener A (2017). Determination of temporary shelter areas in natural disasters by gis: A case study, Gölcük/Turkey. International Journal of Engineering and Geosciences, 2(3), 84-90.
  • Velsamy S, Balasubramaniyan G, Swaminathan B & Kesavan D (2020). Multi-decadal shoreline change analysis in coast of Thiruchendur Taluk, Thoothukudi district, Tamil Nadu, India, using remote sensing and DSAS techniques. Arabian Journal of Geosciences, 13(17), 1-12.
  • Xoplaki E, Maheras P & Luterbacher J (2001). Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Climatic Change, 48(4), 581-615.
Year 2022, Volume: 7 Issue: 3, 253 - 260, 15.12.2022
https://doi.org/10.29128/geomatik.1017376

Abstract

References

  • Ahmad SR & Lakhan VC (2012). GIS-based analysis and modeling of coastline advance and retreat along the coast of Guyana. Marine Geodesy, 35(1), 1-15.
  • Ali I, Cawkwell F, Dwyer E, Barrett B & Green S (2016). Satellite remote sensing of grasslands: from observation to management. Journal of Plant Ecology, 9(6), 649-671.
  • Ali PY & Narayana AC (2015). Short-term morphological and shoreline changes at Trinkat Island, Andaman and Nicobar, India, after the 2004 Tsunami. Marine Geodesy 38(1), 26–39.
  • Armah FA (2011). GIS-based assessment of short term Shoreline changes in the coastal erosion-sensitive zone of Accra, Ghana. Research Journal of Environmental Sciences, 5(7), 643-54.
  • Beşel C & Kayıkçı ET (2020). Investigation Of Black Sea Mean Sea Level Variability By Singular Spectrum Analysis. International Journal of Engineering and Geosciences, 5(1), 33-41.
  • Bevacqua A, Yu D & Zhang Y (2018). Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environmental Science & Policy, 82, 19-29.
  • Boak EH & Turner IL (2005). Shoreline definition and detection: A review. Journal of Coastal Research 21(4), 688–703.
  • Carr MH, Robinson SP, Wahle C, Davis G, Kroll S, Murray S, Schumacker EJ & Williams M (2017). The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 6-29.
  • Ciritci D & Turk T (2020). Assessment of the Kalman filter-based future shoreline prediction method. International Journal of Environmental Science and Technology, 17, 3801–3816.
  • Danforth WW & Thieler ER (1992). Digital Shoreline Analysis System (DSAS) user's guide; version 1.0 (No. 92-355). US Geological Survey.
  • Das B & Dhorde A (2015). Assessment of shoreline change and its relation with Mangrove vegetation: A case study over North Konkan region of Raigad, Maharashtra, India. International Journal of Engineering and Geosciences, 7(2), 101-111.
  • Dereli MA & Tercan E (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics, 13(3), 709-718.
  • Dewidar KM & Frihy OE (2010). Automated techniques for quantification of beach change rates using Landsat series along the North-eastern Nile Delta, Egypt. Journal of Oceanography and Marine Science, 1(2), 28-39.
  • Doygun H, Oğuz H, Atak BK & Nurlu E (2011). Alan Kullanım Değişimlerinin Doğal Karakterli Kıyı Alanları Üzerindeki Etkilerinin Uzaktan Algılama ve CBS Yardımıyla İncelenmesi: Çiğli/İzmir Örneği, I. Akdeniz Orman ve Çevre Sempozyumu, Kahramanmaraş.
  • Döker MF (2012). İstanbul İli Marmara Denizi Kıyı Çizgisinde Meydana Gelen Zamansal Değişimin Belirlenmesi. International Journal of Human Scienses, 9(2),1250-1369.
  • Geyer WR, Hill PS & Kineke GC (2004). The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research, 24(7-8), 927-949.
  • Ghorai D & Bhunia GS (2020). Automatic shoreline detection and its forecast: a case study on Dr. Abdul Kalam Island in the section of Bay of Bengal. Geocarto International, 1-20.
  • Glover C & Robertson A (1998). Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298(1-3), 103-132.
  • Gormsen E (1997). The impact of tourism on coastal areas. GeoJournal, 42(1), 39-54.
  • Gracy Margret Mary R, Sundar V & Sannasiraj SA (2020). Analysis of shoreline change between inlets along the coast of Chennai, India. Marine Georesources & Geotechnology, 1-10.
  • Guha S & Govil H (2021). Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. International Journal of Engineering and Geosciences, 6(3), 165-173.
  • Gül O (2008). Marmara Gölü (Manisa) kuş türleri populasyonlarının tespiti ve alanı etkileyen çevresel faktörlerin belirlenmesi üzerine araştırmalar [Researches on the determination of ornithofauna of and environmental factors affecting Marmara lake (Manisa, Turkey). Ege University, Institute of Science: M.Sc. Thesis
  • Hossain KT, Salauddin M & Tanim IA (2016). Assessment of the dynamics of coastal island in Bangladesh using geospatial techniques: Domar Char. Journal of the Asiatic Society of Bangladesh, Science, 42(2), 219-228.
  • İlhan A & Sarı HM (2011): Marmara Gölü balık faunası ve balıkçılık faaliyetleri. Ege Journal of Fisheries Aquatic Sciences, 30, 187–191.
  • Jana A, Maiti S & Biswas A (2017). Appraisal of long-term shoreline oscillations from a part of coastal zones of Sundarban delta, Eastern India: A study based on geospatial technology. Spatial Information Research, 25(5), 713-723.
  • Kermani S, Boutiba M, Guendouz M, Guettouche MS & Khelfani D (2016). Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of jijelian sandy coast (East Algeria). Ocean & coastal management, 132, 46-58.
  • Kireeva M, Frolova N, Rets E, Samsonov T, Entin A, Kharlamov M, Telegina E & Povalishnikova E (2020). Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period. International Journal of River Basin Management, 18(4), 491-502.
  • Kurt S, Karaburun A, Demirci A (2010). Coastline Changes in İstanbul Between 1987 and 2007. Scientific Research and Essays 5(19), 3009-3017.
  • Mahmoodi A, Lashteh Neshaei MA, Mansouri A & Shafai Bejestan M (2020). Study of current-and wave-induced sediment transport in the Nowshahr Port entrance channel by using numerical modeling and field measurements. Journal of Marine Science and Engineering, 8(4), 284.
  • Mitra SS, Santra A & Mitra D (2013). Change detection analysis of the shoreline using Toposheet and Satellite Image: A case study of the coastal stretch of Mandarmani-Shankarpur, West Bengal, India. International Journal of Geomatics and Geosciences, 3(3), 425.
  • Nassar K, Fath H, Mahmod WE, Masria A, Nadaoka K & Negm A (2018). Automatic detection of shoreline change: case of North Sinai coast, Egypt. Journal of Coastal Conservation. https://doi.org/10.1007/s11852-018-0613-1.
  • Nassar K, Mahmod WE, Fath H, Masria A, Nadaoka K & Negm A (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81-95.
  • Natesan U, Parthasarathy A, Vishnunath R, Kumar GEJ & Ferrer VA (2015). Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques. Aquatic Procedia, 4, 325-332.
  • Niya AK, Alesheikh AA, Soltanpor M & Kheirkhahzarkesh MM (2013). Shoreline change mapping using remote sensing and GIS. Int. J. Remote Sens. Appl., 3(3), 102-107.
  • Nor NAM, Tahar KN, Suprijo T & Sulaiman SAH (2020). Shoreline Changes Analysis Along the Coast of Kuala Terengganu, Malaysia using DSAS. In 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) (pp. 276-281).
  • Page SJ, Hartwell H, Johns N, Fyall A, Ladkin A & Hemingway A. (2017). Case study: Wellness, tourism and small business development in a UK coastal resort: Public engagement in practice. Tourism Management, 60, 466-477.
  • Peel MC, Finlayson BL & McMahon TA (2007): Updated world map of Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4, 1633–1644.
  • Phillips MR & Jones AL (2006). Erosion and tourism infrastructure in the coastal zone: Problems, consequences and management. Tourism Management, 27(3), 517-524.
  • Rahman SA, Islam MM, Salman MA & Rafiq MR (2022). Evaluating bank erosion and identifying possible anthropogenic causative factors of Kirtankhola River in Barishal, Bangladesh: an integrated GIS and Remote Sensing approaches. International Journal of Engineering and Geosciences, 7(2), 179-190.
  • Roy S & Mahmood R (2016). Monitoring shoreline dynamics using landsat an d hydrological data: a case study of Sandwip Island of Bangladesh. The Pennsylvania Geographer, 54(2), 20-41.
  • Sebat M & Salloum J (2018). Estimate the rate of shoreline change using the statistical analysis technique (Epr). Business & It, 8(1).
  • Şentürk E & Erener A (2017). Determination of temporary shelter areas in natural disasters by gis: A case study, Gölcük/Turkey. International Journal of Engineering and Geosciences, 2(3), 84-90.
  • Velsamy S, Balasubramaniyan G, Swaminathan B & Kesavan D (2020). Multi-decadal shoreline change analysis in coast of Thiruchendur Taluk, Thoothukudi district, Tamil Nadu, India, using remote sensing and DSAS techniques. Arabian Journal of Geosciences, 13(17), 1-12.
  • Xoplaki E, Maheras P & Luterbacher J (2001). Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Climatic Change, 48(4), 581-615.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Abdurahman Yasin Yiğit 0000-0002-9407-8022

Halil İbrahim Şenol 0000-0003-0235-5764

Yunus Kaya 0000-0003-2319-4998

Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Yiğit, A. Y., Şenol, H. İ., & Kaya, Y. (2022). Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması. Geomatik, 7(3), 253-260. https://doi.org/10.29128/geomatik.1017376
AMA Yiğit AY, Şenol Hİ, Kaya Y. Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması. Geomatik. December 2022;7(3):253-260. doi:10.29128/geomatik.1017376
Chicago Yiğit, Abdurahman Yasin, Halil İbrahim Şenol, and Yunus Kaya. “Çok Zamanlı Multispektral Uydu Verilerinin Marmara Gölü kıyı değişimi Analizinde kullanılması”. Geomatik 7, no. 3 (December 2022): 253-60. https://doi.org/10.29128/geomatik.1017376.
EndNote Yiğit AY, Şenol Hİ, Kaya Y (December 1, 2022) Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması. Geomatik 7 3 253–260.
IEEE A. Y. Yiğit, H. İ. Şenol, and Y. Kaya, “Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması”, Geomatik, vol. 7, no. 3, pp. 253–260, 2022, doi: 10.29128/geomatik.1017376.
ISNAD Yiğit, Abdurahman Yasin et al. “Çok Zamanlı Multispektral Uydu Verilerinin Marmara Gölü kıyı değişimi Analizinde kullanılması”. Geomatik 7/3 (December 2022), 253-260. https://doi.org/10.29128/geomatik.1017376.
JAMA Yiğit AY, Şenol Hİ, Kaya Y. Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması. Geomatik. 2022;7:253–260.
MLA Yiğit, Abdurahman Yasin et al. “Çok Zamanlı Multispektral Uydu Verilerinin Marmara Gölü kıyı değişimi Analizinde kullanılması”. Geomatik, vol. 7, no. 3, 2022, pp. 253-60, doi:10.29128/geomatik.1017376.
Vancouver Yiğit AY, Şenol Hİ, Kaya Y. Çok zamanlı multispektral uydu verilerinin Marmara Gölü kıyı değişimi analizinde kullanılması. Geomatik. 2022;7(3):253-60.