Theoretical Article
BibTex RIS Cite

Possible Effects of Antimony on Human Health with the Environment and Necessary Precautions

Year 2024, Volume: 59 Issue: 1, 1 - 20, 18.07.2024
https://doi.org/10.70054/geosound.1440840

Abstract

Genel olarak gümüş beyazı renginde bir metal olan antimon, farklı bileşimlere sahiptir. Antimonun bu kimyasal bileşimlerine bağlı olarak, farklı endüstrilerde kullanımı bulunmaktadır. Antimon cevherinin çıkarılmasından endüstride kullanılmasına kadar her bir aşamada, toz, toprak, yiyecek, su, bitkisel ilaç ve kontrolsüz diyet takviyeleri gibi antimon içerikli dış faktörlerden insanların antimon ile dolaylı veya direk teması söz konudur. İnsanların bu metale maruziyetine bağlı olarak göz, cilt, solunum sistemi, sinir sistemi, pnömokonyoz ile kardiyovasküler ve gastrointestinal sistemlerinde bazı sağlık sorunları şeklinde toksik etki gösterebilir. Antimon pentaklorür (SbCl5) en toksik olanıdır. Antimon maruziyetine maruz kalmış kişilerde antimon toksisitesinin belirlenmesinde idrar tahlilleri yapılmalı ve bu kişilere sanitasyon uygulanmalıdır. Özellikle çalışan bireylerin sağlığının korunması için idrar antimon ortalamasının 0.09 μg/L üstüne çıkmamasına dikkat edilmelidir. NIOSH REL, Mevcut OSHA PEL, 1989 OSHA PEL, 1989 OSHA PEL ve 1993-1994 ACGIH TLV verilerine göre antimonun “Hayata veya Sağlığa Doğrudan Tehlikeli Konsantrasyonlar” (IDLH: Immediately Dangerous to Life or Health) 0.5 mg Sb/m3 TWA olarak belirlenmiştir. Antimon varlığı tespit edilen alanlarda klinik toksikoloji, farmasötik ajanlar, işyeri ve yaşadığımız ortamdaki anomali durumları birlikte değerlendirilerek indeks hesaplamaları ile risk analizleri yapılmalı, varsa insidans kontrol altına alınmalı ve uygun acil eylem planı yapılmalıdır.

References

  • AIHA (1959). Antimony and its compounds (excepting stibine). In: Hygienic guide series. Am Ind Hyg Assoc Q 20:515-516.
  • Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., & Santa Regina, I. (2012). Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Science of the Total Environment, 439, 35-43.
  • Anderson, C. G. (2012). The metallurgy of antimony. Geochemistry, 72, 3-8.
  • Asakura, K; Satoh, H; Chiba, M; Okamoto, M; Serizawa, K; Nakano, M; Omae, K. (2009). Genotoxicity studies of heavy metals: Lead, Bismuth, Indium, Silver and Antimony. J. Occup. Health, 51, 498–512.
  • Baldwin, D. R., & Marshall, W. J. (1999). Heavy metal poisoning and its laboratory investigation. Annals of clinical biochemistry, 36(3), 267-300.
  • Cele, E. N., & Maboeta, M. (2016). Response of soil enzyme activities to synergistic effects of biosolids and plants in iron ore mine soils. International journal of environmental science and technology, 13(9), 2117-2126.
  • Cooper, R. G., & Harrison, A. P. (2009). The exposure to and health effects of antimony. Indian journal of occupational and environmental medicine, 13(1), 3.
  • Çolak, A. H., & Aksoy, H. (1997). Rhododendron pontificum L.(Mor Çiçekli Ormangülü)’nun Silvikültür Özellikleri Üzerine Araştırmalar (Doctoral dissertation, PhD dissertation, İstanbul, Turkey. Institute of Science and Technology, İstanbul University).
  • Dartan, G., & Toröz, İ. (2013). Güney Marmara Bölgesinde Tarım Topraklarında Ağır Metal Kirliliğinin Araştırılması. Marmara Fen Bilimleri Dergisi, 25(1), 24-40.
  • Frustaci, A., Magnavita, N., Chimenti, C., Caldarulo, M., Sabbioni, E., Pietra, R., ... & Maseri, A. (1999). Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. Journal of the American College of Cardiology, 33(6), 1578-1583.
  • Fu, Z., Wu, F., Amarasiriwardena, D., Mo, C., Liu, B., Zhu, J., ... & Liao, H. (2010). Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Science of the Total Environment, 408(16), 3403-3410.
  • Gebel T, Claussen K, Dunkelberg H. (1998). Human biomonitoring of antimony. Int Arch Occup Environ Health;71(3):221-224
  • Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-biological interactions, 107(3), 131-144.
  • Göncüoğlu, M. C. (1986). Geochronological data from the southern part (Niğde area) of the Central Anatolian Massif. Mineral Research and Exploration Institute of Turkey (MTA) Bulletin, 105(106), 111-124.
  • Guo, L., Zhao, W., Gu, X., Zhao, X., Chen, J., & Cheng, S. (2017). Risk assessment and source identification of 17 metals and metalloids on soils from the half-century old tungsten mining areas in Lianhuashan, Southern China. International journal of environmental research and public health, 14(12), 1475.
  • Guo, X., Wu, Z., & He, M. (2009). Removal of antimony (V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water research, 43(17), 4327-4335.
  • Güven, A., Kahvecioğlu, Ö., Kartal, G., Timur, S., & Metalurji, İ. T. Ü. (2004). Metallerin çevresel etkileri-III. Metalurji Dergisi, 138, 64-71.
  • Hasany, S. M., & Chaudhary, M. H. (1996). Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution. Applied Radiation and Isotopes, 47(4), 467-471.
  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the total environment, 421, 41-50.
  • He, X., Min, X., Peng, T., Ke, Y., Zhao, F., Sillanpää, M., & Wang, Y. (2020). Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. Environmental Science and Pollution Research, 1-12.
  • Heltai, G., Győri, Z., Fekete, I., Halász, G., Kovács, K., Takács, A., ... & Horváth, M. (2018). Longterm study of transformation of potentially toxic element pollution in soil/water/sediment system by means of fractionation with sequential extraction procedures. Microchemical journal, 136, 85-93.
  • Howd, R. A., Brown, J. P., Morry, D. W., Wang, Y. Y., Bankowska, J., Budroe, J. D., ... & Lewis, D. (2000). Development of California public health goals (PHGs) for chemicals in drinking water. Journal of Applied Toxicology: An International Journal, 20(5), 365-380.
  • Kara, E. E., & Ertan, Kara. (2018). Toprakta Ağır Metal Kirliliğinin İnsan Sağlığına Etkileri ve Çözüm Önerileri. Türk Bilimsel Derlemeler Dergisi, 11(1), 56-62.
  • Kentner, M., Leinemann, M., Schaller, K. H., Weltle, D., & Lehnert, G. (1995). External and internal antimony exposure in starter battery production. International Archives of Occupational and Environmental Health, 67, 119-123.vd
  • Keskin, L. (2009). Bazı patlıcan genotiplerinde fide gelişimi ve besin elementi içeriklerine arbuscular mikoriza fungus uygulamalarının etkileri (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
  • Khalid, N., Ahmad, S., Toheed, A., & Ahmed, J. (2000). Potential of rice husks for antimony removal. Applied Radiation and Isotopes, 52(1), 31-38.
  • Leng, Y., Guo, W., Su, S., Yi, C., & Xing, L. (2012). Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal, 211, 406-411.
  • Liu, B. J., Wu, F. C., Deng, Q. J., Mo, C. L., Zhu, J., Zeng, L., ... & Li, W. (2009). Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan antimony mining area and Guiyang City, China. Huan jing ke xue= Huanjing kexue, 30(3), 907-912.
  • Liu, H., Ying, Q., Li, C., Norra, S., & Lichtfouse, E. (2020). Enhanced Removal of Antimony in Dyeing Wastewater by Mixing Fe3O4 with Manganese Sand Filter Material. Water Environment Research.
  • Luo, J., Hu, C., Meng, X., Crittenden, J., Qu, J., & Peng, P. (2017). Antimony removal from aqueous solution using novel α-MnO2 nanofibers: equilibrium, kinetic, and density functional theory studies. ACS Sustainable Chemistry & Engineering, 5(3), 2255-2264.
  • Murciego, A. M., Sánchez, A. G., González, M. R., Gil, E. P., Gordillo, C. T., Fernández, J. C., & Triguero, T. B. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145(1), 15-21.
  • Okkenhaug, Gudny and Mulder Oca. (2017). Antimony. Encyclopedia of Soil Science, Vols I-Iii, 3rd Edition Pages: ‏ 146-149.
  • Pérez-Sirvent, C., Martínez-Sánchez, M. J., Martínez-López, S., Bech, J., & Bolan, N. (2012). Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. Journal of Geochemical Exploration, 123, 128-135.
  • Pintor, A. M., Vieira, B. R., Boaventura, R. A., & Botelho, C. M. (2020). Removal of antimony from water by iron-coated cork granulates. Separation and Purification Technology, 233, 116020.
  • Poudyal, N. C., Gyawali, B. R., & Simon, M. (2019). Local residents’ views of surface mining: Perceived impacts, subjective well-being, and support for regulations in southern Appalachia. Journal of cleaner production, 217, 530-540.
  • Rodrigues, S. M., Henriques, B., da Silva, E. F., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81(11), 1549-1559.
  • Salam, M. A., & Mohamed, R. M. (2013). Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chemical engineering research and design, 91(7), 1352-1360.
  • Serfor-Armah, Y., Nyarko, B. J. B., Dampare, S. B., & Adomako, D. (2006). Levels of arsenic and antimony in water and sediment from Prestea, a gold mining town in Ghana and its environs. Water, Air, and Soil Pollution, 175(1-4), 181.
  • Shotyk, W., Krachler, M., & Chen, B. (2006). Contamination of Canadian and European bottled waters with antimony from PET containers. Journal of environmental monitoring, 8(2), 288-292.
  • Snedeker, S. M. (2014). Antimony in food contact materials and household plastics: uses, exposure, and health risk considerations. In Toxicants in Food Packaging and Household Plastics (pp. 205-230). Springer, London. 10.1007/978-1-4471-6500-2_8
  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International journal of environmental research and public health, 7(12), 4267-4277.
  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International journal of environmental research and public health, 7(12), 4267-4277.
  • Tatar, Ç. P. (2014). Kurşun Maruziyetinin İş Sağlığı Ve Güvenliği Açısından Değerlendirilmesi (Akü, Maden Ve Metal İşyerlerinde). TC Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara.
  • Tümüklü, A., & Tosunbaş, O. (2021). Gümüşler (Niğde) Antimon (Sb) Cevherleşmesinin Mineralojik ve Jeokimyasal Araştırılması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(1), 166-188.
  • Tylenda, C. A., Sullivan Jr, D. W., & Fowler, B. A. (2015). Antimony. In Handbook on the Toxicology of Metals (pp. 565-579). Academic Press.
  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015). Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326-342.
  • Wang, X., He, M., Xi, J., & Lu, X. (2011). Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal, 97(1), 4-11.
  • Wasilkowski, D., Nowak, A., Michalska, J., & Mrozik, A. (2019). Ecological restoration of heavy metal-contaminated soil using Na-bentonite and green compost coupled with the cultivation of the grass Festuca arundinacea. Ecological Engineering, 138, 420-433.
  • Wiener, R. C., & Bhandari, R. (2020). Association of electronic cigarette use with lead, cadmium, barium, and antimony body burden: NHANES 2015-2016. Journal of Trace Elements in Medicine and Biology, 62, 126602.
  • Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., & Liao, H. (2011). Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area. Science of the Total Environment, 409(18), 3344-3351.
  • Wu, Z., He, M., Guo, X., & Zhou, R. (2010). Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Separation and Purification Technology, 76(2), 184-190.
  • Xu, Y. H., Ohki, A., & Maeda, S. (2001). Adsorption and removal of antimony from aqueous solution by an activated Alumina: 1. Adsorption capacity of adsorbent and effect of process variables. Toxicological & Environmental Chemistry, 80(3-4), 133-144.
  • Yalcin, M. G. (1995). Gumusler (Nigde) Bolgesi Polimetalik Antimuan—Civa Cevherlesmesinin Mineralojisi ve Jeokimyasal Incelemesi (Doctoral dissertation, Doktora Tezi. Adana, p 165).
  • Yalcin, M. G., Narin, I., & Soylak, M. (2008). Multivariate analysis of heavy metal contents of sediments from Gumusler creek, Nigde, Turkey. Environmental Geology, 54(6), 1155-1163.
  • Yalçın, M. G., & Çopuroğlu, İ. (2001). Niğde Masifi metalik maden yataklarının mineralojisi ve jenezi. Yalçın, M. G., & Yaman, S. (1996). Gümüşler (Niğde) antimon-civa cevherleşmesinin mineralojik incelemesi. Year, F. (2013). Agency for Toxic Substances and Disease Registry.
  • Yucel Muhammet Bayram. (2020). Antik dönemden günümüze bir serüven: Antimuan. MTA Doğal Kaynaklar ve Ekonomi Bülteni. 29: 79-100.
  • ACGIH, American Conference of Governmental Industrial Hygienists. (1994). Antimony and compounds. In: Documentation of the threshold limit values and biological exposure indices. 6th ed. Cincinnati, OH, pp. 73-75.
  • ATSDR, Agency for Toxic Substances and Disease Registry (1992). Toxicological profile for Antimony. US Public Health Service, US Department of Health and Human Services, Altanta, p. 136.
  • CDC, https://www.cdc.gov/niosh/npg/npgd0036.html
  • http://tatdtoksikoloji.org/klinik-toksikoloji
  • http://www.cdc.gov/niosh/fire/spotlight.html : Niosh Safety and Health Topic: Fire Fighter Fatality Investigation and Prevention Program.
  • https://www.ttb.org.tr/eweb/bergama/5.html
  • IARC, International Agency for Research on Cancer. (1989). Antimony trioxide and antimony trisulfide. In: IARC, editor. IARC Monographs. Lyon (France): IARC;. p. 291.
  • IAA, International Antimony Asssociation. (2018). IAA response to rohs pack 15 questionnaire ato, 31 p., Brussels, Belgium.
  • IAA, International Antimony Asssociation. (2021). https://www.antimony.com/antimony-2/. 20 Şubat 2021.
  • NIOSH, The National Institute for Occupational Safety and Health. (1985). NIOSH publications catalog. US
  • Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Standards Development and Technology Transfer.
  • US Department of Health and Human Services. (2002). Agency for Toxic Substances and Disease Registry: Atlanta. GA, USA, 1-291.
  • WHO, World Health Organization. (1993). Guidelines for drinking-water quality. World Health Organization.
  • WHO, World Health Organization. (2003). Meeting on the Introduction of the 3rd Edition of WHO Guidelines for Drinking Water Quality, Kuala Lumpur, Malaysia, 8-11 December 2003: report (No. WP) CWS/ICP/HSE/4.3/001-E).
  • WHO Regional Office for the Western Pacific.
  • WHO, World Health Organization. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization.

Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler

Year 2024, Volume: 59 Issue: 1, 1 - 20, 18.07.2024
https://doi.org/10.70054/geosound.1440840

Abstract

Genel olarak gümüş beyazı renginde bir metal olan antimon, farklı bileşimlere sahiptir. Antimonun bu kimyasal bileşimlerine bağlı olarak, farklı endüstrilerde kullanımı bulunmaktadır. Antimon cevherinin çıkarılmasından endüstride kullanılmasına kadar her bir aşamada, toz, toprak, yiyecek, su, bitkisel ilaç ve kontrolsüz diyet takviyeleri gibi antimon içerikli dış faktörlerden insanların antimon ile dolaylı veya direk teması söz konudur. İnsanların bu metale maruziyetine bağlı olarak göz, cilt, solunum sistemi, sinir sistemi, pnömokonyoz ile kardiyovasküler ve gastrointestinal sistemlerinde bazı sağlık sorunları şeklinde toksik etki gösterebilir. Antimon pentaklorür (SbCl5) en toksik olanıdır. Antimon maruziyetine maruz kalmış kişilerde antimon toksisitesinin belirlenmesinde idrar tahlilleri yapılmalı ve bu kişilere sanitasyon uygulanmalıdır. Özellikle çalışan bireylerin sağlığının korunması için idrar antimon ortalamasının 0.09 μg/L üstüne çıkmamasına dikkat edilmelidir. NIOSH REL, Mevcut OSHA PEL, 1989 OSHA PEL, 1989 OSHA PEL ve 1993-1994 ACGIH TLV verilerine göre antimonun “Hayata veya Sağlığa Doğrudan Tehlikeli Konsantrasyonlar” (IDLH: Immediately Dangerous to Life or Health) 0.5 mg Sb/m3 TWA olarak belirlenmiştir. Antimon varlığı tespit edilen alanlarda klinik toksikoloji, farmasötik ajanlar, işyeri ve yaşadığımız ortamdaki anomali durumları birlikte değerlendirilerek indeks hesaplamaları ile risk analizleri yapılmalı, varsa insidans kontrol altına alınmalı ve uygun acil eylem planı yapılmalıdır.

References

  • AIHA (1959). Antimony and its compounds (excepting stibine). In: Hygienic guide series. Am Ind Hyg Assoc Q 20:515-516.
  • Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., & Santa Regina, I. (2012). Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Science of the Total Environment, 439, 35-43.
  • Anderson, C. G. (2012). The metallurgy of antimony. Geochemistry, 72, 3-8.
  • Asakura, K; Satoh, H; Chiba, M; Okamoto, M; Serizawa, K; Nakano, M; Omae, K. (2009). Genotoxicity studies of heavy metals: Lead, Bismuth, Indium, Silver and Antimony. J. Occup. Health, 51, 498–512.
  • Baldwin, D. R., & Marshall, W. J. (1999). Heavy metal poisoning and its laboratory investigation. Annals of clinical biochemistry, 36(3), 267-300.
  • Cele, E. N., & Maboeta, M. (2016). Response of soil enzyme activities to synergistic effects of biosolids and plants in iron ore mine soils. International journal of environmental science and technology, 13(9), 2117-2126.
  • Cooper, R. G., & Harrison, A. P. (2009). The exposure to and health effects of antimony. Indian journal of occupational and environmental medicine, 13(1), 3.
  • Çolak, A. H., & Aksoy, H. (1997). Rhododendron pontificum L.(Mor Çiçekli Ormangülü)’nun Silvikültür Özellikleri Üzerine Araştırmalar (Doctoral dissertation, PhD dissertation, İstanbul, Turkey. Institute of Science and Technology, İstanbul University).
  • Dartan, G., & Toröz, İ. (2013). Güney Marmara Bölgesinde Tarım Topraklarında Ağır Metal Kirliliğinin Araştırılması. Marmara Fen Bilimleri Dergisi, 25(1), 24-40.
  • Frustaci, A., Magnavita, N., Chimenti, C., Caldarulo, M., Sabbioni, E., Pietra, R., ... & Maseri, A. (1999). Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. Journal of the American College of Cardiology, 33(6), 1578-1583.
  • Fu, Z., Wu, F., Amarasiriwardena, D., Mo, C., Liu, B., Zhu, J., ... & Liao, H. (2010). Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Science of the Total Environment, 408(16), 3403-3410.
  • Gebel T, Claussen K, Dunkelberg H. (1998). Human biomonitoring of antimony. Int Arch Occup Environ Health;71(3):221-224
  • Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-biological interactions, 107(3), 131-144.
  • Göncüoğlu, M. C. (1986). Geochronological data from the southern part (Niğde area) of the Central Anatolian Massif. Mineral Research and Exploration Institute of Turkey (MTA) Bulletin, 105(106), 111-124.
  • Guo, L., Zhao, W., Gu, X., Zhao, X., Chen, J., & Cheng, S. (2017). Risk assessment and source identification of 17 metals and metalloids on soils from the half-century old tungsten mining areas in Lianhuashan, Southern China. International journal of environmental research and public health, 14(12), 1475.
  • Guo, X., Wu, Z., & He, M. (2009). Removal of antimony (V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water research, 43(17), 4327-4335.
  • Güven, A., Kahvecioğlu, Ö., Kartal, G., Timur, S., & Metalurji, İ. T. Ü. (2004). Metallerin çevresel etkileri-III. Metalurji Dergisi, 138, 64-71.
  • Hasany, S. M., & Chaudhary, M. H. (1996). Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution. Applied Radiation and Isotopes, 47(4), 467-471.
  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the total environment, 421, 41-50.
  • He, X., Min, X., Peng, T., Ke, Y., Zhao, F., Sillanpää, M., & Wang, Y. (2020). Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. Environmental Science and Pollution Research, 1-12.
  • Heltai, G., Győri, Z., Fekete, I., Halász, G., Kovács, K., Takács, A., ... & Horváth, M. (2018). Longterm study of transformation of potentially toxic element pollution in soil/water/sediment system by means of fractionation with sequential extraction procedures. Microchemical journal, 136, 85-93.
  • Howd, R. A., Brown, J. P., Morry, D. W., Wang, Y. Y., Bankowska, J., Budroe, J. D., ... & Lewis, D. (2000). Development of California public health goals (PHGs) for chemicals in drinking water. Journal of Applied Toxicology: An International Journal, 20(5), 365-380.
  • Kara, E. E., & Ertan, Kara. (2018). Toprakta Ağır Metal Kirliliğinin İnsan Sağlığına Etkileri ve Çözüm Önerileri. Türk Bilimsel Derlemeler Dergisi, 11(1), 56-62.
  • Kentner, M., Leinemann, M., Schaller, K. H., Weltle, D., & Lehnert, G. (1995). External and internal antimony exposure in starter battery production. International Archives of Occupational and Environmental Health, 67, 119-123.vd
  • Keskin, L. (2009). Bazı patlıcan genotiplerinde fide gelişimi ve besin elementi içeriklerine arbuscular mikoriza fungus uygulamalarının etkileri (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
  • Khalid, N., Ahmad, S., Toheed, A., & Ahmed, J. (2000). Potential of rice husks for antimony removal. Applied Radiation and Isotopes, 52(1), 31-38.
  • Leng, Y., Guo, W., Su, S., Yi, C., & Xing, L. (2012). Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal, 211, 406-411.
  • Liu, B. J., Wu, F. C., Deng, Q. J., Mo, C. L., Zhu, J., Zeng, L., ... & Li, W. (2009). Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan antimony mining area and Guiyang City, China. Huan jing ke xue= Huanjing kexue, 30(3), 907-912.
  • Liu, H., Ying, Q., Li, C., Norra, S., & Lichtfouse, E. (2020). Enhanced Removal of Antimony in Dyeing Wastewater by Mixing Fe3O4 with Manganese Sand Filter Material. Water Environment Research.
  • Luo, J., Hu, C., Meng, X., Crittenden, J., Qu, J., & Peng, P. (2017). Antimony removal from aqueous solution using novel α-MnO2 nanofibers: equilibrium, kinetic, and density functional theory studies. ACS Sustainable Chemistry & Engineering, 5(3), 2255-2264.
  • Murciego, A. M., Sánchez, A. G., González, M. R., Gil, E. P., Gordillo, C. T., Fernández, J. C., & Triguero, T. B. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145(1), 15-21.
  • Okkenhaug, Gudny and Mulder Oca. (2017). Antimony. Encyclopedia of Soil Science, Vols I-Iii, 3rd Edition Pages: ‏ 146-149.
  • Pérez-Sirvent, C., Martínez-Sánchez, M. J., Martínez-López, S., Bech, J., & Bolan, N. (2012). Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. Journal of Geochemical Exploration, 123, 128-135.
  • Pintor, A. M., Vieira, B. R., Boaventura, R. A., & Botelho, C. M. (2020). Removal of antimony from water by iron-coated cork granulates. Separation and Purification Technology, 233, 116020.
  • Poudyal, N. C., Gyawali, B. R., & Simon, M. (2019). Local residents’ views of surface mining: Perceived impacts, subjective well-being, and support for regulations in southern Appalachia. Journal of cleaner production, 217, 530-540.
  • Rodrigues, S. M., Henriques, B., da Silva, E. F., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81(11), 1549-1559.
  • Salam, M. A., & Mohamed, R. M. (2013). Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chemical engineering research and design, 91(7), 1352-1360.
  • Serfor-Armah, Y., Nyarko, B. J. B., Dampare, S. B., & Adomako, D. (2006). Levels of arsenic and antimony in water and sediment from Prestea, a gold mining town in Ghana and its environs. Water, Air, and Soil Pollution, 175(1-4), 181.
  • Shotyk, W., Krachler, M., & Chen, B. (2006). Contamination of Canadian and European bottled waters with antimony from PET containers. Journal of environmental monitoring, 8(2), 288-292.
  • Snedeker, S. M. (2014). Antimony in food contact materials and household plastics: uses, exposure, and health risk considerations. In Toxicants in Food Packaging and Household Plastics (pp. 205-230). Springer, London. 10.1007/978-1-4471-6500-2_8
  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International journal of environmental research and public health, 7(12), 4267-4277.
  • Sundar, S., & Chakravarty, J. (2010). Antimony toxicity. International journal of environmental research and public health, 7(12), 4267-4277.
  • Tatar, Ç. P. (2014). Kurşun Maruziyetinin İş Sağlığı Ve Güvenliği Açısından Değerlendirilmesi (Akü, Maden Ve Metal İşyerlerinde). TC Çalışma ve Sosyal Güvenlik Bakanlığı İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara.
  • Tümüklü, A., & Tosunbaş, O. (2021). Gümüşler (Niğde) Antimon (Sb) Cevherleşmesinin Mineralojik ve Jeokimyasal Araştırılması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(1), 166-188.
  • Tylenda, C. A., Sullivan Jr, D. W., & Fowler, B. A. (2015). Antimony. In Handbook on the Toxicology of Metals (pp. 565-579). Academic Press.
  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015). Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326-342.
  • Wang, X., He, M., Xi, J., & Lu, X. (2011). Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal, 97(1), 4-11.
  • Wasilkowski, D., Nowak, A., Michalska, J., & Mrozik, A. (2019). Ecological restoration of heavy metal-contaminated soil using Na-bentonite and green compost coupled with the cultivation of the grass Festuca arundinacea. Ecological Engineering, 138, 420-433.
  • Wiener, R. C., & Bhandari, R. (2020). Association of electronic cigarette use with lead, cadmium, barium, and antimony body burden: NHANES 2015-2016. Journal of Trace Elements in Medicine and Biology, 62, 126602.
  • Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., & Liao, H. (2011). Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area. Science of the Total Environment, 409(18), 3344-3351.
  • Wu, Z., He, M., Guo, X., & Zhou, R. (2010). Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Separation and Purification Technology, 76(2), 184-190.
  • Xu, Y. H., Ohki, A., & Maeda, S. (2001). Adsorption and removal of antimony from aqueous solution by an activated Alumina: 1. Adsorption capacity of adsorbent and effect of process variables. Toxicological & Environmental Chemistry, 80(3-4), 133-144.
  • Yalcin, M. G. (1995). Gumusler (Nigde) Bolgesi Polimetalik Antimuan—Civa Cevherlesmesinin Mineralojisi ve Jeokimyasal Incelemesi (Doctoral dissertation, Doktora Tezi. Adana, p 165).
  • Yalcin, M. G., Narin, I., & Soylak, M. (2008). Multivariate analysis of heavy metal contents of sediments from Gumusler creek, Nigde, Turkey. Environmental Geology, 54(6), 1155-1163.
  • Yalçın, M. G., & Çopuroğlu, İ. (2001). Niğde Masifi metalik maden yataklarının mineralojisi ve jenezi. Yalçın, M. G., & Yaman, S. (1996). Gümüşler (Niğde) antimon-civa cevherleşmesinin mineralojik incelemesi. Year, F. (2013). Agency for Toxic Substances and Disease Registry.
  • Yucel Muhammet Bayram. (2020). Antik dönemden günümüze bir serüven: Antimuan. MTA Doğal Kaynaklar ve Ekonomi Bülteni. 29: 79-100.
  • ACGIH, American Conference of Governmental Industrial Hygienists. (1994). Antimony and compounds. In: Documentation of the threshold limit values and biological exposure indices. 6th ed. Cincinnati, OH, pp. 73-75.
  • ATSDR, Agency for Toxic Substances and Disease Registry (1992). Toxicological profile for Antimony. US Public Health Service, US Department of Health and Human Services, Altanta, p. 136.
  • CDC, https://www.cdc.gov/niosh/npg/npgd0036.html
  • http://tatdtoksikoloji.org/klinik-toksikoloji
  • http://www.cdc.gov/niosh/fire/spotlight.html : Niosh Safety and Health Topic: Fire Fighter Fatality Investigation and Prevention Program.
  • https://www.ttb.org.tr/eweb/bergama/5.html
  • IARC, International Agency for Research on Cancer. (1989). Antimony trioxide and antimony trisulfide. In: IARC, editor. IARC Monographs. Lyon (France): IARC;. p. 291.
  • IAA, International Antimony Asssociation. (2018). IAA response to rohs pack 15 questionnaire ato, 31 p., Brussels, Belgium.
  • IAA, International Antimony Asssociation. (2021). https://www.antimony.com/antimony-2/. 20 Şubat 2021.
  • NIOSH, The National Institute for Occupational Safety and Health. (1985). NIOSH publications catalog. US
  • Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Standards Development and Technology Transfer.
  • US Department of Health and Human Services. (2002). Agency for Toxic Substances and Disease Registry: Atlanta. GA, USA, 1-291.
  • WHO, World Health Organization. (1993). Guidelines for drinking-water quality. World Health Organization.
  • WHO, World Health Organization. (2003). Meeting on the Introduction of the 3rd Edition of WHO Guidelines for Drinking Water Quality, Kuala Lumpur, Malaysia, 8-11 December 2003: report (No. WP) CWS/ICP/HSE/4.3/001-E).
  • WHO Regional Office for the Western Pacific.
  • WHO, World Health Organization. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Metalic Mines
Journal Section Research Articles
Authors

Mustafa Gurhan Yalcın 0000-0002-8011-5371

Özge Özer Atakoğlu 0000-0003-2678-1194

Publication Date July 18, 2024
Submission Date February 21, 2024
Acceptance Date March 15, 2024
Published in Issue Year 2024 Volume: 59 Issue: 1

Cite

APA Yalcın, M. G., & Özer Atakoğlu, Ö. (2024). Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler. Geosound, 59(1), 1-20. https://doi.org/10.70054/geosound.1440840
AMA Yalcın MG, Özer Atakoğlu Ö. Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler. Geosound. July 2024;59(1):1-20. doi:10.70054/geosound.1440840
Chicago Yalcın, Mustafa Gurhan, and Özge Özer Atakoğlu. “Antimonun Çevre Ile İnsan Sağlığı Üzerindeki Olası Etkileri Ve Gerekli Tedbirler”. Geosound 59, no. 1 (July 2024): 1-20. https://doi.org/10.70054/geosound.1440840.
EndNote Yalcın MG, Özer Atakoğlu Ö (July 1, 2024) Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler. Geosound 59 1 1–20.
IEEE M. G. Yalcın and Ö. Özer Atakoğlu, “Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler”, Geosound, vol. 59, no. 1, pp. 1–20, 2024, doi: 10.70054/geosound.1440840.
ISNAD Yalcın, Mustafa Gurhan - Özer Atakoğlu, Özge. “Antimonun Çevre Ile İnsan Sağlığı Üzerindeki Olası Etkileri Ve Gerekli Tedbirler”. Geosound 59/1 (July 2024), 1-20. https://doi.org/10.70054/geosound.1440840.
JAMA Yalcın MG, Özer Atakoğlu Ö. Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler. Geosound. 2024;59:1–20.
MLA Yalcın, Mustafa Gurhan and Özge Özer Atakoğlu. “Antimonun Çevre Ile İnsan Sağlığı Üzerindeki Olası Etkileri Ve Gerekli Tedbirler”. Geosound, vol. 59, no. 1, 2024, pp. 1-20, doi:10.70054/geosound.1440840.
Vancouver Yalcın MG, Özer Atakoğlu Ö. Antimonun Çevre ile İnsan Sağlığı Üzerindeki Olası Etkileri ve Gerekli Tedbirler. Geosound. 2024;59(1):1-20.

The journal *Geosound* encompasses all fields of earth sciences (geology, geophysics, mining, geomorphology, geotechnics, hydrogeology, geostatistics, etc.), publishing original studies, case presentations, and new developments conducted at national and international levels.