Research Article
BibTex RIS Cite

THE EFFECTS OF EXCIPIENT FOODS AND EMULSIONS ON CAROTENOID BIOACCESSIBILITY

Year 2017, Volume: 42 Issue: 4, 447 - 456, 15.08.2017

Abstract

Recently,
increasing attention has been given to carotenoid bioaccessibility and
bioavailability in the field of nutrition research. As a consequence of their
lipophilic nature and their specific localization in plant-based tissues,
carotenoid bioaccessibility and bioavailability is generally quite low in raw
fruits and vegetables, since carotenoids need to be released from the cellular
matrix and incorporated in the lipid fraction during digestion before being
absorbed.
However, the poor water-solubility, high melting
point, and low oral bioavailability of lipophilic bioactive agents like
carotenoids make them difficult to incorporate into many aqueous-based food
products and may reduce their bioaccessibility within the gastrointestinal
tract. Today’s approach related to improve bioaccessibility is to design of
food matrix. Recently, the newest approach, excipient food, has been introduced
to improve the bioavailability of orally administered bioactive compounds. The
main idea is combining food and another food (the excipient food) whose
composition and/or structure is specifically designed to improve health
benefits. This article reviews studies related to the impact of food matrix and
structure on the bioaccessibility of carotenoids, and excipient foods and emulsions designed in the light of this
knowledge.

References

  • Abuajah CI, Ogbonna AC, Osuji CM. 2015. Functional components and medicinal properties of food: A review. J Food Sci Technol, 52(5):2522-2529.
  • McClements, D.J., 2015. Enhancing nutraceutical bioavailability through food matrix design. Curr Opin Food Sci, 4:1–6.
  • McClements, D.J., and Xiao, H., 2014. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct, 5:1320-1333.
  • Parada, J., Aguilera, J.M., 2007. Food Microstructure Affects the Bioavailability of Several Nutrients. J Food Sci, 72(2):21-32.
  • Fernandez-Garcia, E., Carvajal-Lerida, I., Perez-Galvez, A., 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res, 29(11):751-760.
  • Courraud, J., Berger, J., Cristol, J.P., Avallone, S., 2013. Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem, 136(2):871–877.
  • Carbonell-Capella, J.M., Buniowska, M., Barba, F.J., Esteve, M.J., Frigola, A., 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr Rev Food Sci Food Saf, 13:155-171.
  • Holst, B., Williamson, G., 2008. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol, 19:73–82.
  • Silve de Lima, A.C., da Rocha Viana, J.D., de Souza Sabino, L.B., da Silva, L.M., da Silva, N.K., de Sousa, P.H., 2016. Processing of three different cooking methods of cassava: Effects on in vitro bioaccessibility of phenolic compounds and antioxidant activity. Food Sci Technol, In press.
  • Anese, M., Bot, F., Panozzo, A., Mirolo, G., Lippe, G., 2015. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp. Food Chem, 172:685-691.
  • Kamiloğlu, S., Paslı, A.A, Ozcelık, B., Camp, J.V., Capanoglu, E., 2015. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem, 186:74-82.
  • Pineda-Vadillo, C., Nau, F., Dubiard, C.G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., Guadaramma, A, Toth, T., Csvajda, E, Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Bordoni, A., Dupont, D., 2016. In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activitys. Food Res Int, 88:284-292.
  • Sengul, H., Surek, E., Erdil, D.N., 2014. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punicagranatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Res Int, 62:1069-1079.
  • Alminger, M., Aura, A.M., Bohn, T., Dufour, C., El, S.N., Gomes, A., Karakaya, S., Martinez- Cuesta, M.C., Mcdougall, G., J., Requena, T., Santos, C., N., 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr Rev Food Sci Food Saf, 13:413-436.
  • West, C., E.,Castenmiller, J.J.J.M., 1998. Quantification of the "SLAMENGHI" factors for carotenoid bioavailability and bioconversion. Int J Vitam Nutr Res, 68:371-377.
  • Corte-Real, J., Richling, E., Hoffmann, L., and Bohn, T., 2014. Selective factors governing in vitro β-carotene bioaccessibility: negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices. Nutr Res, 34:1101-1110.
  • Tydeman, E. A., Parker, M. L., Wickham, M. S. J., Rich, G. T., Faulks, R. M., Gidley, M. J., 2010. Effect of carrot (Daucuscarota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract: In vitro simulations of carrot digestion. Journal of Agricultural and Food Chem, 58:9847-9854.
  • Lemmens, L., Van Buggenhout, S., Van Loey, A., and Hendrickx, M., 2010. Particle size reduction leading to cell wall rupture is more important for b-carotene bio-accessibility of raw compared to thermally processed carrots. J Agric Food Chem, 58:12769-12776.
  • Lemmens, L., Van Buggenhout, S., Oey, I., Van Loey, A., and Hendrickx, M., 2009. Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Res Int, 42:1323-1330.
  • Netzel, M., Netzel, G., Zabaras, D., Lundin, L., Day, L., Addepalli, R., 2011. Release and absorption of carotenes from processed carrots (Daucuscarota) using in vitro digestion coupled with a Caco-2 cell trans-well culture model. Food Res Int, 44:868-874.
  • Knockaert, G., Lemmens, L., Van Buggenhout, S., Hendrickx, M., Van Loey, A., 2012. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem, 133:60-67.
  • Hedren, E., Diaz, V., Svanberg, U., 2002. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur J Clin Nutr, 56:425-430.
  • Hornero-Mendez, D., Mınguez-Mosquera, M. I., 2007. Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci and Emerg Technol, 8:407-412.
  • Anese, M., Mirolo, G., Beraldo, P., and Lippe, G., 2013. Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem, 136:458-463.
  • Colle, I., Van Buggenhout, S., Van Loey, A., Hendrickx, M., 2010. High pressure homogenization followed by thermal processing of tomato pulp: influence on microstructure and lycopene in vitro bioaccessibility. Food Res Int, 43:2193-2200.
  • Lemmens, L., Colle, I., Knockaert, G., Van Buggenhout, S., Van Loey, A., Hendrickx, M. 2013. Influence of pilot scale in pack pasteurization and sterilization treatments on nutritional and textural characteristics of carrot pieces. Food Res Int, 50:526-533.
  • Saini, R.K., Nile, S.H., Park, S.W., 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 76:735-750.
  • Yi, J., Zhong, F., Zhang, Y., Yokoyama, W., Zhao, L., 2015. Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems. J Agric Food Chem, 63(50):10831-10837.
  • McClements, D.J., Saliva-Trujillo, L., Zhang, R., Zhang, Z., Zou, L., Yao, M., Xiao, H., 2015. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Res Int, Article in press.
  • McClements, D.J., Zou, L, Zhang, R., Salvia-Trujillo, L., 2015. Enhancing nutraceutical performance using excipient foods: Designing Food structures and compositions to increase bioavailability. Compr Rev Food Sci Food Saf, 14:824-847.
  • Wang, Z., Neves, M.A., Isoda, H., Nakajıma, M., 2015. Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Componenets. Jpn J Food Eng, 16(4):263-276.
  • Salvia-Trujillo, L., Qian, C., Martin-Belloso, O., McClements, D.J., 2013. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem, 139:878-884.
  • Hornero-Mendez, D., Mınguez-Mosquera, M. I., 2007. Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci Emerg Technol, 8:407-412.
  • Moelants, K.R.N., Lemmens, L., Vandebroeck, M., VanBuggenhout, S., Van Loey, A.M., Hendrickx, M. E., 2012. Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions. J Agri Food Chem, 60:11995-12003.
  • Colle, I.J.P., Lemmens, L., Van Buggenhout, S., Met, K., Van Loey, A., and Hendrickx, M., 2013. Processing tomato pulp in the presence of lipids: the impact on lycopene bioaccessibility. Food Res Int, 51:32-38.
  • 36 Colle, I.J.P., Van Buggenhout, S., Lemmens, L., Van Loey, A. M., and Hendrickx, M. E., 2012. The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Res Int, 45:250-255.
  • Nagao, A., Kotake-Nara, E., &Hase, M., 2013. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Biosci Biotechnol & Biochem, 77:1055-1060.
  • Verrijssen, T., A., J., Smeets, K., H., G., Christiaens, S., Palmers, S., Van Loey, A., M.,Hendrickx, M., E., 2015. Relation between in vitro lipid digestion and β-carotene bioaccessibility in β-carotene-enriched emulsions with different concentrations of L-α-phosphatidylcholine. Food Res Int, 67:60-66.
  • Mun, S., Kim, Y., R., McClements, D., J., 2015. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem, 173: 454-461.
  • Mun, S., Kim, Y., R., Shin, M., McClements, D.,J., 2015.Control of lipid digestion and nutraceutical bioaccessibility usingstarch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocoll, 44:380-389.
  • Verrijssen, T.A.J., Balduyck, L., G., Christiaens, S., Van Loey, A., M., Van Buggenhout, S., Hendrickx, M., E., 2014. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsion. Food Res Int, 57:71-78.
  • Ribnicky, D., M., Roopchand, D., E., Oren, A., Grace, M., Poulev A., Lila, M., A., Havenaar, R., Raskin, I., 2014. Effects of a high fat meal matrix and protein complexationon the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem, 142:349-357.
  • Pappalardo, G, Lusk, J.L., 2016. The role of beliefs in purchasing process of functional foods. Food Qual Pref, 53:151-158.
  • Xuan Liu, Jinfeng Bi, Hang Xiao, David Julian McClements, 2016. Enhancement of Nutraceutical Bioavailability using Excipient Nanoemulsions: Role of Lipid Digestion Products on Bioaccessibility of Carotenoids and Phenolics from Mangoes. J Food Sci, 81(3):754-761.
  • Liu, X., Bi, J., Xiao, H., McClements, D.J., 2015. Increasing carotenoid bioaccessibility from yellow peppers using excipient emulsions: Impact of lipid type and thermal processing. Agric Food Chem, 63:8534-8543.
  • Karakaya, S., El, S.N., Şimşek, Ş., 2015. Functional Salad Dressing as an Excipient Food. Turk J Agric - Food Sci Technol, 3(11):849-855.
  • Salvia-Trujillo, L., McClements, D.J., 2016. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chem, 210:295-304.
  • Ranjan, S., Dasgupta, N, Chakraborty, A.R., Samuel, M., Ramalingam, C., Shanker, R., Kumar, A., 2014. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopartic Res, 16:2464.
  • Bai, L., Huan, S., Gu, J., McClements, D.J., 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll, 61:703-711.
  • Zhang, R., McClements, D.J., 2016. Enhancing nutraceutical bioavailability controlling the composition and structure of gastrointestinal contents: Emulsion-based delivery and excipient systems. Food Struc, 10:21-36.
  • Zhang, R., Zhang, Z., Zou, L., Xiao, H., Zhang, G., Decker, E.,A., McClements, D.J., 2015. Impact of Lipid Content on the Ability of Excipient Emulsions to Increase Carotenoid Bioaccessibility from Natural Sources (Raw and Cooked Carrots). Food Biophys, 11:71-80.
  • Degrou, A., George, S., Renard, C.M.G.C, Page, D., 2013. Physicochemical parameters that influence carotenoids bioaccessibility from a tomato juice. Food Chem, 136:435-441.

EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ

Year 2017, Volume: 42 Issue: 4, 447 - 456, 15.08.2017

Abstract

Son
yıllarda beslenme alanındaki araştırmalar karotenoidlerin biyoerişilebilirliği
ve biyoyarayışlılığı üzerine yoğunlaşmıştır. Karotenoidlerin lipofilik yapısı
ve bitkisel gıdalardaki spesifik lokalizasyonunun bir sonucu olarak, genellikle
çiğ meyve ve sebzelerdeki biyoerişilebilirlikleri ve biyoyarayışlılıkları
düşüktür. Çünkü karotenoidlerin emilimlerinden önce hücre matriksinden açığa
çıkmaları ve sindirim sırasında lipit fazına geçmeleri gerekmektedir. Karotenoidler gibi lipofilik karakterdeki
biyoaktif bileşiklerin çoğunun biyoyarayışlılığı suda çözünürlüğün düşük
olması, yüksek erime sıcaklığı ve kimyasal stabilitenin zayıf olması gibi nedenlerle
düşüktür. Bu sorunu çözmeye yönelik günümüz yaklaşımı, gıda matriksinin dizayn
edilmesidir. Bu kapsamda araştırmalar halen devam etmektedir.  Ancak en yeni yaklaşım faydalı etkinin
eksipiyan gıdalarla artırılmasıdır. 
Buradaki temel fikir gıdanın, kompozisyonu ve/veya yapısı sağlık
faydasını artıracak şekilde özel olarak dizayn edilmiş diğer bir gıda ile
(eksipiyan gıda) birlikte tüketilmesidir.
Bu makalede gıda matriksinin ve
yapısının karotenoid biyoerişilebilirliği üzerine etkisi ve bu bilgiler ışığında
dizayn edilen eksipiyan gıda ve emülsiyonlarla ilgili yapılan çalışmalar
derlenmiştir. 

References

  • Abuajah CI, Ogbonna AC, Osuji CM. 2015. Functional components and medicinal properties of food: A review. J Food Sci Technol, 52(5):2522-2529.
  • McClements, D.J., 2015. Enhancing nutraceutical bioavailability through food matrix design. Curr Opin Food Sci, 4:1–6.
  • McClements, D.J., and Xiao, H., 2014. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct, 5:1320-1333.
  • Parada, J., Aguilera, J.M., 2007. Food Microstructure Affects the Bioavailability of Several Nutrients. J Food Sci, 72(2):21-32.
  • Fernandez-Garcia, E., Carvajal-Lerida, I., Perez-Galvez, A., 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res, 29(11):751-760.
  • Courraud, J., Berger, J., Cristol, J.P., Avallone, S., 2013. Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem, 136(2):871–877.
  • Carbonell-Capella, J.M., Buniowska, M., Barba, F.J., Esteve, M.J., Frigola, A., 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr Rev Food Sci Food Saf, 13:155-171.
  • Holst, B., Williamson, G., 2008. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol, 19:73–82.
  • Silve de Lima, A.C., da Rocha Viana, J.D., de Souza Sabino, L.B., da Silva, L.M., da Silva, N.K., de Sousa, P.H., 2016. Processing of three different cooking methods of cassava: Effects on in vitro bioaccessibility of phenolic compounds and antioxidant activity. Food Sci Technol, In press.
  • Anese, M., Bot, F., Panozzo, A., Mirolo, G., Lippe, G., 2015. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp. Food Chem, 172:685-691.
  • Kamiloğlu, S., Paslı, A.A, Ozcelık, B., Camp, J.V., Capanoglu, E., 2015. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem, 186:74-82.
  • Pineda-Vadillo, C., Nau, F., Dubiard, C.G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., Guadaramma, A, Toth, T., Csvajda, E, Hingyi, H., Karakaya, S., Sibakov, J., Capozzi, F., Bordoni, A., Dupont, D., 2016. In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activitys. Food Res Int, 88:284-292.
  • Sengul, H., Surek, E., Erdil, D.N., 2014. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punicagranatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Res Int, 62:1069-1079.
  • Alminger, M., Aura, A.M., Bohn, T., Dufour, C., El, S.N., Gomes, A., Karakaya, S., Martinez- Cuesta, M.C., Mcdougall, G., J., Requena, T., Santos, C., N., 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr Rev Food Sci Food Saf, 13:413-436.
  • West, C., E.,Castenmiller, J.J.J.M., 1998. Quantification of the "SLAMENGHI" factors for carotenoid bioavailability and bioconversion. Int J Vitam Nutr Res, 68:371-377.
  • Corte-Real, J., Richling, E., Hoffmann, L., and Bohn, T., 2014. Selective factors governing in vitro β-carotene bioaccessibility: negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices. Nutr Res, 34:1101-1110.
  • Tydeman, E. A., Parker, M. L., Wickham, M. S. J., Rich, G. T., Faulks, R. M., Gidley, M. J., 2010. Effect of carrot (Daucuscarota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract: In vitro simulations of carrot digestion. Journal of Agricultural and Food Chem, 58:9847-9854.
  • Lemmens, L., Van Buggenhout, S., Van Loey, A., and Hendrickx, M., 2010. Particle size reduction leading to cell wall rupture is more important for b-carotene bio-accessibility of raw compared to thermally processed carrots. J Agric Food Chem, 58:12769-12776.
  • Lemmens, L., Van Buggenhout, S., Oey, I., Van Loey, A., and Hendrickx, M., 2009. Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Res Int, 42:1323-1330.
  • Netzel, M., Netzel, G., Zabaras, D., Lundin, L., Day, L., Addepalli, R., 2011. Release and absorption of carotenes from processed carrots (Daucuscarota) using in vitro digestion coupled with a Caco-2 cell trans-well culture model. Food Res Int, 44:868-874.
  • Knockaert, G., Lemmens, L., Van Buggenhout, S., Hendrickx, M., Van Loey, A., 2012. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem, 133:60-67.
  • Hedren, E., Diaz, V., Svanberg, U., 2002. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. Eur J Clin Nutr, 56:425-430.
  • Hornero-Mendez, D., Mınguez-Mosquera, M. I., 2007. Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci and Emerg Technol, 8:407-412.
  • Anese, M., Mirolo, G., Beraldo, P., and Lippe, G., 2013. Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem, 136:458-463.
  • Colle, I., Van Buggenhout, S., Van Loey, A., Hendrickx, M., 2010. High pressure homogenization followed by thermal processing of tomato pulp: influence on microstructure and lycopene in vitro bioaccessibility. Food Res Int, 43:2193-2200.
  • Lemmens, L., Colle, I., Knockaert, G., Van Buggenhout, S., Van Loey, A., Hendrickx, M. 2013. Influence of pilot scale in pack pasteurization and sterilization treatments on nutritional and textural characteristics of carrot pieces. Food Res Int, 50:526-533.
  • Saini, R.K., Nile, S.H., Park, S.W., 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 76:735-750.
  • Yi, J., Zhong, F., Zhang, Y., Yokoyama, W., Zhao, L., 2015. Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems. J Agric Food Chem, 63(50):10831-10837.
  • McClements, D.J., Saliva-Trujillo, L., Zhang, R., Zhang, Z., Zou, L., Yao, M., Xiao, H., 2015. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Res Int, Article in press.
  • McClements, D.J., Zou, L, Zhang, R., Salvia-Trujillo, L., 2015. Enhancing nutraceutical performance using excipient foods: Designing Food structures and compositions to increase bioavailability. Compr Rev Food Sci Food Saf, 14:824-847.
  • Wang, Z., Neves, M.A., Isoda, H., Nakajıma, M., 2015. Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Componenets. Jpn J Food Eng, 16(4):263-276.
  • Salvia-Trujillo, L., Qian, C., Martin-Belloso, O., McClements, D.J., 2013. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem, 139:878-884.
  • Hornero-Mendez, D., Mınguez-Mosquera, M. I., 2007. Bioaccessibility of carotenes from carrots: effect of cooking and addition of oil. Innov Food Sci Emerg Technol, 8:407-412.
  • Moelants, K.R.N., Lemmens, L., Vandebroeck, M., VanBuggenhout, S., Van Loey, A.M., Hendrickx, M. E., 2012. Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions. J Agri Food Chem, 60:11995-12003.
  • Colle, I.J.P., Lemmens, L., Van Buggenhout, S., Met, K., Van Loey, A., and Hendrickx, M., 2013. Processing tomato pulp in the presence of lipids: the impact on lycopene bioaccessibility. Food Res Int, 51:32-38.
  • 36 Colle, I.J.P., Van Buggenhout, S., Lemmens, L., Van Loey, A. M., and Hendrickx, M. E., 2012. The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Res Int, 45:250-255.
  • Nagao, A., Kotake-Nara, E., &Hase, M., 2013. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Biosci Biotechnol & Biochem, 77:1055-1060.
  • Verrijssen, T., A., J., Smeets, K., H., G., Christiaens, S., Palmers, S., Van Loey, A., M.,Hendrickx, M., E., 2015. Relation between in vitro lipid digestion and β-carotene bioaccessibility in β-carotene-enriched emulsions with different concentrations of L-α-phosphatidylcholine. Food Res Int, 67:60-66.
  • Mun, S., Kim, Y., R., McClements, D., J., 2015. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem, 173: 454-461.
  • Mun, S., Kim, Y., R., Shin, M., McClements, D.,J., 2015.Control of lipid digestion and nutraceutical bioaccessibility usingstarch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocoll, 44:380-389.
  • Verrijssen, T.A.J., Balduyck, L., G., Christiaens, S., Van Loey, A., M., Van Buggenhout, S., Hendrickx, M., E., 2014. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsion. Food Res Int, 57:71-78.
  • Ribnicky, D., M., Roopchand, D., E., Oren, A., Grace, M., Poulev A., Lila, M., A., Havenaar, R., Raskin, I., 2014. Effects of a high fat meal matrix and protein complexationon the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem, 142:349-357.
  • Pappalardo, G, Lusk, J.L., 2016. The role of beliefs in purchasing process of functional foods. Food Qual Pref, 53:151-158.
  • Xuan Liu, Jinfeng Bi, Hang Xiao, David Julian McClements, 2016. Enhancement of Nutraceutical Bioavailability using Excipient Nanoemulsions: Role of Lipid Digestion Products on Bioaccessibility of Carotenoids and Phenolics from Mangoes. J Food Sci, 81(3):754-761.
  • Liu, X., Bi, J., Xiao, H., McClements, D.J., 2015. Increasing carotenoid bioaccessibility from yellow peppers using excipient emulsions: Impact of lipid type and thermal processing. Agric Food Chem, 63:8534-8543.
  • Karakaya, S., El, S.N., Şimşek, Ş., 2015. Functional Salad Dressing as an Excipient Food. Turk J Agric - Food Sci Technol, 3(11):849-855.
  • Salvia-Trujillo, L., McClements, D.J., 2016. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chem, 210:295-304.
  • Ranjan, S., Dasgupta, N, Chakraborty, A.R., Samuel, M., Ramalingam, C., Shanker, R., Kumar, A., 2014. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopartic Res, 16:2464.
  • Bai, L., Huan, S., Gu, J., McClements, D.J., 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll, 61:703-711.
  • Zhang, R., McClements, D.J., 2016. Enhancing nutraceutical bioavailability controlling the composition and structure of gastrointestinal contents: Emulsion-based delivery and excipient systems. Food Struc, 10:21-36.
  • Zhang, R., Zhang, Z., Zou, L., Xiao, H., Zhang, G., Decker, E.,A., McClements, D.J., 2015. Impact of Lipid Content on the Ability of Excipient Emulsions to Increase Carotenoid Bioaccessibility from Natural Sources (Raw and Cooked Carrots). Food Biophys, 11:71-80.
  • Degrou, A., George, S., Renard, C.M.G.C, Page, D., 2013. Physicochemical parameters that influence carotenoids bioaccessibility from a tomato juice. Food Chem, 136:435-441.
There are 52 citations in total.

Details

Journal Section Articles
Authors

Birgül Hızlar This is me

Sibel Karakaya

Publication Date August 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 4

Cite

APA Hızlar, B., & Karakaya, S. (2017). EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ. Gıda, 42(4), 447-456.
AMA Hızlar B, Karakaya S. EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ. The Journal of Food. August 2017;42(4):447-456.
Chicago Hızlar, Birgül, and Sibel Karakaya. “EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ”. Gıda 42, no. 4 (August 2017): 447-56.
EndNote Hızlar B, Karakaya S (August 1, 2017) EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ. Gıda 42 4 447–456.
IEEE B. Hızlar and S. Karakaya, “EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ”, The Journal of Food, vol. 42, no. 4, pp. 447–456, 2017.
ISNAD Hızlar, Birgül - Karakaya, Sibel. “EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ”. Gıda 42/4 (August 2017), 447-456.
JAMA Hızlar B, Karakaya S. EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ. The Journal of Food. 2017;42:447–456.
MLA Hızlar, Birgül and Sibel Karakaya. “EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ”. Gıda, vol. 42, no. 4, 2017, pp. 447-56.
Vancouver Hızlar B, Karakaya S. EKSİPİYAN GIDA VE EMÜLSİYONLARIN KAROTENOİD BİYOERİŞİLEBİLİRLİĞİ ÜZERİNE ETKİSİ. The Journal of Food. 2017;42(4):447-56.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/