Review
BibTex RIS Cite

ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI

Year 2017, Volume: 42 Issue: 6, 708 - 725, 15.12.2017

Abstract

Nanoteknoloji, bilim insanlarına çeşitli
malzemeler üzerinde nanometre çaplarında çalışma fırsatı tanıyan bilim ve
teknoloji alanıdır. Bu teknoloji sayesinde çok farklı özellikler ile donatılmış
yeni nesil nano ürünler üretilmektedir. Son yıllarda geliştirilen nano ürünler
arasında en önemlilerinden biri nanosensörlerdir. Tıp, sağlık, ilaç, elektronik
gibi farklı alanlarda kullanılabilen nanosensörler; günümüzde gıda alanında da
yeni yeni kendine yer edinmeye başlamıştır. Özellikle gıdalarda tespit edilmesi
istenen unsurlar için hızlı, ekonomik ve güvenilir bir ölçüm olanağı sunan
nanosensörler; elektriksel alan çekimiyle nanometre inceliğinde materyal
üretimi sağlayan elektro-eğirme yöntemiyle de üretilebilmektedir. Gıda alanı
dahil pek çok alanda kullanılmakta olan bu yöntemle, yeni özellikler
kazandırılmış fonksiyonel nano ölçekli sensörler tasarlanabilir. Bu çalışmada elektro-eğirme
yöntemiyle üretilmiş, gıdaların kalitesi ve güvenliği hakkındaki bilgilere
erişim kolaylığı sağlayan nanosensörler açıklanmaktadır.

References

  • Alessandra, A., Matteo, S., Stephan, D., Saverio, M.. (2010). Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds, Analytica Chimica Acta 659(1-2):133–136, doi: 10.1016/j.aca.2009.11.039.
  • Altay, F. (2011). Elektro üretim yöntemiyle elde edilen nano liflerin özelliklerine etki eden faktörler. Dünya Gıda 2, 74-78.
  • Baltacı, C., Gündoğdu, A. (2012). Enstrümental gıda analizleri. Gümüşhane Üniversitesi, Gümüşhane, 94s.
  • Ballesteros, O., Zafra, A., Navalón, A., Vílchez, J.L. (2006). Sensitive gas chromatographic–mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol a and their chlorinated derivatives in wastewater samples. Journal of Chromatography A 1121(2): 154–62, doi: 10.1016/j.chroma.2006.04.014.
  • Cemeroğlu, B., Yemenicioğlu, A., Özkan, M. (2001). Meyve ve sebzelerin bileşimi soğukta depolanmaları. Gıda Teknolojisi Derneği Yayınları, Ankara, 328p.
  • Clark, L., Lyons, Jr., Ann, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29-45, doi:10.1111/j.1749-6632.1962.tb13623.x
  • Cooper, N., Khosravan, R., Erdmann, C., Fiene, J., Lee, J.W. (2006). Quantification of uric acid, xanthine and hypoxanthine in human serum by hplc for pharmacodynamic studies. Journal of Chromatography B 837(1-2): 1–10, doi:10.1016/j.jchromb.2006.02.060
  • Ding, B., Wang, M., Wang, X., Yu, J., Sun, G. (2010). Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11): 16–27, doi:10.1016/S1369-7021(10)70200-5
  • Duncan, T.V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363: 1–24. doi:10.1016/j.jcis.2011.07.017
  • Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 73s.
  • Frenot, A., Chronakis, I.S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science 8(1): 64–75, doi:10.1016/S1359-0294(03)00004-9
  • Fitzgerald, M., Papkovsky, D.B., Kerry, J.P. O’Sullivan, C.K., Buckley, D.J., Guilbault, G.G. (2001). Nondestructive monitoring of oxygen profiles in packaged foods using phase-fluorimetric oxygen sensor. Journal of Food Science 66(1): 105-110. doi:10.1111/j.1365-2621.2001.tb15590.x
  • Gamlı, F.Ö. (2014). Laboratuvar Teknikleri ve Temel Gıda Analizleri. Dora yayınları, İstanbul, 232s.
  • Geltmeyer, J., Vancoillie, G., Steyaert, I., Breyne., B., Cousins, G., Lava, K., Hoogenboom, R., Buysser, D. K., ve Clerck, D. K. (2016). Colorimetric sensors: dye modification of nanofibrous silicon oxide membranes for colorimetric hcl and nh3 sensing. Advanced Functional Materials 26(33): 5987–5996, doi: 10.1002/adfm.201670216
  • Gündüz, T. (2002). İnstrümental Analiz. Gazi Kitabevi, Ankara, 607s.
  • Hışıl, Y. (1999). Enstrümental Gıda Analizleri – II. Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları, Bornova, İzmir, 192s.
  • Hışıl, Y. (1999). Enstrümental Gıda Analizleri – III. Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları, Bornova, İzmir, 141s.
  • Khoshaman A.H., Bahreyni B. (2012). Application of metal organic framework crystals for sensing of volatile organic gases, Sensors and Actuators B: Chemical 162: 114-119. doi:10.1016/j.snb.2011.12.046
  • Kozanoğlu, G. S. (2006). Elektrospinning yöntemiyle nanolif üretim teknolojisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 161s.
  • Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453): 622-625. doi:10.1126/science.287.5453.622
  • Kress-Rogers, E. (2001). Instrumentation for food quality assurance. In Instrumentation and Sensors fort the Food Industry, Edited by E. Kress-Rodgers, C.J.B. Brimelow, Woodhead Publishing Ltd, Cambridge, UK, 581-669p.
  • Kriegel, C., Arrechi, A., Kit, K., McClements, D. J. ve Weiss, J. (2008). Fabrication, functionalization and supplication of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition 48: 775-797. doi: 10.1080/10408390802241325.
  • Moraru, C.I., Panchapakesan, C.P., Huang, Q., Takhistov, P., Liu, S., Kokini, J.L. (2003). Nanotechnology: a new frontier in food science. Food Technol 57(12): 24-29.
  • Mihindukulasuriya, S.D.F. (2012). Investigations of heat seal parameters and oxygen detection in flexible packages. PhD Thesis, Department of Food Science, University of Guelph, Canada, 212p.
  • Özkan, M., Kırca, A. (2001). Gıdalarda hidrojen peroksit uygulamaları, Gıda, 26 (1): 17-24.
  • Perez-Lopez, B., Merkoci, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technolog 22: 625–639, doi:10.1016/j.tifs.2011.04.001
  • Qureshi, M.A., Karthikeyan, S., Karthikeyan, P., Khan, P.A., Uprit, S., Mishra, U.K. (2012). Application of nanotechnology in food and dairy processing: An Overview, Pakistan Journal of Food Sciences 22(1): 23-31, doi: 10.1080/10408391003785417
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z. Ramaseshan, R. (2006). Electrospun nanofibers: solving global issues. Materials Today 9 (3): 40-50, doi:10.1016/S1369-7021(06)71389-X
  • Rangkupan, R. (2002). Electrospinning process of polymer melts, PhD Thesis, The Graduate Faculty of the University of Akron, Ohio, USA.
  • Rice, S.L., Eitenmiller, R.R., Kohler, P.E. (1976). Biologically active amines in food. Journal of Milk and Food Technology 39 (5): 353-358.
  • Robertson, G.L. (2012), Food Packaging: Principles and Practice, Taylor & Francis Group, London, 687s.
  • Robinson, J.W., Frame, E.M.S., Frame, G.M. (2005). Undergraduate instrumental analysis. Marcel Dekker, New York, 1204p.
  • Sapers, G.M., Simsons, G.F. (1998). Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technology 52(2): 48-52.
  • Scampicchio, M., Arecchi, A., Bianco, A., Bulbarello, A., Bertarelli, C., Mannino, S., (2010). Nylon nanofibrous biosensors for glucose determination. Electroanalysis 22(10): 1056–1060 doi: 10.1002/elan.200900446
  • Senthamizhan, A., Balusamy, B., Aytac, Z., Uyar, T. (2016). Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2. Analytical and Bioanalytical Chemistry 408 (5): 1347-55. doi: 10.1007/s00216-015-9149-5
  • Shin, Y.M., Hohman, M.M., Brenner, M.P. and Rutledge, G.C. (2001). Experimental characterization of electrospinning: the electrically forced jet and ınstabilities, Polymer 42(25): 9955-9967, doi: 10.1016/S0032-3861(01)00540-7
  • Shin, Y.M., Hohman, M.M., Brenner, M.P. and Rutledge, G.C. (2001). Electrospinning: a whipping fluid jet generates submicron polymer fibers, Applied Physics Letters 78(8): 1149–1151, doi: 10.1063/1.1345798.
  • Skoog, D.A., Holler, F.J., Crouch, S.R. (2007). Principles of instrumental analysis. Thomson Brooks/Cole, Pacific Grove, Canada, 1039p.
  • Smiddy, M., Papkovsky, D.B., Kerry, J.P. (2002). Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats. Food Research International 35(6): 571-575. doi: 10.1016/S0963-9969(01)00159-4.
  • Sozer, N., Kokini, J.L. (2008). Nanotechnology and ıts applications in the food sector. Trends Biotechnol 27(2):82-89.
  • Tarhan, Ö., Gökmen, V. ve Harsa, Ş. (2010). Nanoteknolojinin gıda bilim ve teknolojisi alanındaki uygulamaları. Gıda 35(3): 219-225.
  • Tang, X., Liu, Y., Hou, H., You, T. (2011). A Nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta 83(5): 1410–1414, doi: 10.1016/j.talanta.2010.11.019
  • Uylaşer, V., Konak, A. (2004). Gıdalardaki biyojen aminler ve insan sağlığı açısından önemi, Gıda ve Yem Bilimi – Teknolojisi Dergisi (6): 26-33.
  • Valdes, M.G., Gonzalez, A. C. V., Calzon, J. A. G., Diaz-Garcia, M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta 166(1-2): 1–19, doi:10.1007/s00604-009-0165-z
  • Wang J. (2008). Electrochemical glucose biosensor. Chemical Reviews 108(2): 814-825, doi:10.1021/cr068123a.
  • Wang, Z.H., X.Y. Dong, Li, J. (2008). An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sensors Actuators B 131(2): 411-416, doi: 10.1016/j.snb.2007.11.056.
  • Weiss, J., Takhistov, P., Mcclements, D.J. (2006). Functional materials in food nanotechnology. Journal of Food Science 71(9): 107-116, doi: 10.1111/j.1750-3841.2006.00195.x.
  • Wilson, A.D., Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors 9(7): 5099-5148, doi:10.3390/s90705099
  • Yerlikaya, P., Gökoğlu, N. (2002). Gıdalarda biyojen aminler ve önemi. Gıda Mühendisliği Dergisi 6(12): 24-30.
  • Yetim, H. (2002). Enstrümantal Gıda Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum, 341s.
  • Yılmazer, M. (2014). Elektro döndürme yöntemi ile elde edilen karbon nanolif ve karbon nanotüplerin karakterizasyonu ve işlevselleştirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 99s.
  • Yoon, J., Chae, S. K., Kim, J. M. (2007). Colorimetric sensors for volatile organic compounds (vocs) based on conjugated polymer-embedded electrospun fibers. Journal of the American Chemical Society 129 (11): 3038-3039, doi: 10.1021/ja067856+
  • Zen, J.M., Lai, Y.Y., Yang, H.H., Senthil Kumar, A. (2002). Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sensors Actuators B Chemical 84(2-3): 237-244, doi: 10.1016/S0925-4005(02)00031-X
  • Zhang, H., Chang, M., Wang, J. ve Ye, S. (2008). Evaluation of peach quality indices using an electronic nose by mlr, qpst and bp network. Sensors and Actuators B: Chemical 134(1): 332–338, doi: 10.1016/j.snb.2008.05.008.

APPLICATIONS OF ELECTROSPINNING-BASED NANOSENSORS IN FOOD FIELD

Year 2017, Volume: 42 Issue: 6, 708 - 725, 15.12.2017

Abstract

In recent years, a new generation
of nano products with many different features has been produced by
nanotechnology. One of the most important nanotechnology products developed are
nanosensors. Nanosensors currently used in different fields such as medicine,
health, and electronics have started to take their place in the field of food as
well. Nanosensors offering fast, economical and reliable measurements for the
elements that required to be detected in the foods can also be produced by the
electrospinning method which provides material production with nanometer
diameter using electrical field attraction. Functional nanosensors with new
features can be designed with electrospinning method which is used in many
areas including the food area. This review paper is about nanosensors
produced by electrospinning, providing easy access to quality and food safety
information.

References

  • Alessandra, A., Matteo, S., Stephan, D., Saverio, M.. (2010). Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds, Analytica Chimica Acta 659(1-2):133–136, doi: 10.1016/j.aca.2009.11.039.
  • Altay, F. (2011). Elektro üretim yöntemiyle elde edilen nano liflerin özelliklerine etki eden faktörler. Dünya Gıda 2, 74-78.
  • Baltacı, C., Gündoğdu, A. (2012). Enstrümental gıda analizleri. Gümüşhane Üniversitesi, Gümüşhane, 94s.
  • Ballesteros, O., Zafra, A., Navalón, A., Vílchez, J.L. (2006). Sensitive gas chromatographic–mass spectrometric method for the determination of phthalate esters, alkylphenols, bisphenol a and their chlorinated derivatives in wastewater samples. Journal of Chromatography A 1121(2): 154–62, doi: 10.1016/j.chroma.2006.04.014.
  • Cemeroğlu, B., Yemenicioğlu, A., Özkan, M. (2001). Meyve ve sebzelerin bileşimi soğukta depolanmaları. Gıda Teknolojisi Derneği Yayınları, Ankara, 328p.
  • Clark, L., Lyons, Jr., Ann, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29-45, doi:10.1111/j.1749-6632.1962.tb13623.x
  • Cooper, N., Khosravan, R., Erdmann, C., Fiene, J., Lee, J.W. (2006). Quantification of uric acid, xanthine and hypoxanthine in human serum by hplc for pharmacodynamic studies. Journal of Chromatography B 837(1-2): 1–10, doi:10.1016/j.jchromb.2006.02.060
  • Ding, B., Wang, M., Wang, X., Yu, J., Sun, G. (2010). Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11): 16–27, doi:10.1016/S1369-7021(10)70200-5
  • Duncan, T.V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363: 1–24. doi:10.1016/j.jcis.2011.07.017
  • Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 73s.
  • Frenot, A., Chronakis, I.S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science 8(1): 64–75, doi:10.1016/S1359-0294(03)00004-9
  • Fitzgerald, M., Papkovsky, D.B., Kerry, J.P. O’Sullivan, C.K., Buckley, D.J., Guilbault, G.G. (2001). Nondestructive monitoring of oxygen profiles in packaged foods using phase-fluorimetric oxygen sensor. Journal of Food Science 66(1): 105-110. doi:10.1111/j.1365-2621.2001.tb15590.x
  • Gamlı, F.Ö. (2014). Laboratuvar Teknikleri ve Temel Gıda Analizleri. Dora yayınları, İstanbul, 232s.
  • Geltmeyer, J., Vancoillie, G., Steyaert, I., Breyne., B., Cousins, G., Lava, K., Hoogenboom, R., Buysser, D. K., ve Clerck, D. K. (2016). Colorimetric sensors: dye modification of nanofibrous silicon oxide membranes for colorimetric hcl and nh3 sensing. Advanced Functional Materials 26(33): 5987–5996, doi: 10.1002/adfm.201670216
  • Gündüz, T. (2002). İnstrümental Analiz. Gazi Kitabevi, Ankara, 607s.
  • Hışıl, Y. (1999). Enstrümental Gıda Analizleri – II. Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları, Bornova, İzmir, 192s.
  • Hışıl, Y. (1999). Enstrümental Gıda Analizleri – III. Ege Üniversitesi Basımevi, Ege Üniversitesi Mühendislik Fakültesi Ders Kitapları Yayınları, Bornova, İzmir, 141s.
  • Khoshaman A.H., Bahreyni B. (2012). Application of metal organic framework crystals for sensing of volatile organic gases, Sensors and Actuators B: Chemical 162: 114-119. doi:10.1016/j.snb.2011.12.046
  • Kozanoğlu, G. S. (2006). Elektrospinning yöntemiyle nanolif üretim teknolojisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 161s.
  • Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453): 622-625. doi:10.1126/science.287.5453.622
  • Kress-Rogers, E. (2001). Instrumentation for food quality assurance. In Instrumentation and Sensors fort the Food Industry, Edited by E. Kress-Rodgers, C.J.B. Brimelow, Woodhead Publishing Ltd, Cambridge, UK, 581-669p.
  • Kriegel, C., Arrechi, A., Kit, K., McClements, D. J. ve Weiss, J. (2008). Fabrication, functionalization and supplication of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition 48: 775-797. doi: 10.1080/10408390802241325.
  • Moraru, C.I., Panchapakesan, C.P., Huang, Q., Takhistov, P., Liu, S., Kokini, J.L. (2003). Nanotechnology: a new frontier in food science. Food Technol 57(12): 24-29.
  • Mihindukulasuriya, S.D.F. (2012). Investigations of heat seal parameters and oxygen detection in flexible packages. PhD Thesis, Department of Food Science, University of Guelph, Canada, 212p.
  • Özkan, M., Kırca, A. (2001). Gıdalarda hidrojen peroksit uygulamaları, Gıda, 26 (1): 17-24.
  • Perez-Lopez, B., Merkoci, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technolog 22: 625–639, doi:10.1016/j.tifs.2011.04.001
  • Qureshi, M.A., Karthikeyan, S., Karthikeyan, P., Khan, P.A., Uprit, S., Mishra, U.K. (2012). Application of nanotechnology in food and dairy processing: An Overview, Pakistan Journal of Food Sciences 22(1): 23-31, doi: 10.1080/10408391003785417
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z. Ramaseshan, R. (2006). Electrospun nanofibers: solving global issues. Materials Today 9 (3): 40-50, doi:10.1016/S1369-7021(06)71389-X
  • Rangkupan, R. (2002). Electrospinning process of polymer melts, PhD Thesis, The Graduate Faculty of the University of Akron, Ohio, USA.
  • Rice, S.L., Eitenmiller, R.R., Kohler, P.E. (1976). Biologically active amines in food. Journal of Milk and Food Technology 39 (5): 353-358.
  • Robertson, G.L. (2012), Food Packaging: Principles and Practice, Taylor & Francis Group, London, 687s.
  • Robinson, J.W., Frame, E.M.S., Frame, G.M. (2005). Undergraduate instrumental analysis. Marcel Dekker, New York, 1204p.
  • Sapers, G.M., Simsons, G.F. (1998). Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technology 52(2): 48-52.
  • Scampicchio, M., Arecchi, A., Bianco, A., Bulbarello, A., Bertarelli, C., Mannino, S., (2010). Nylon nanofibrous biosensors for glucose determination. Electroanalysis 22(10): 1056–1060 doi: 10.1002/elan.200900446
  • Senthamizhan, A., Balusamy, B., Aytac, Z., Uyar, T. (2016). Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2. Analytical and Bioanalytical Chemistry 408 (5): 1347-55. doi: 10.1007/s00216-015-9149-5
  • Shin, Y.M., Hohman, M.M., Brenner, M.P. and Rutledge, G.C. (2001). Experimental characterization of electrospinning: the electrically forced jet and ınstabilities, Polymer 42(25): 9955-9967, doi: 10.1016/S0032-3861(01)00540-7
  • Shin, Y.M., Hohman, M.M., Brenner, M.P. and Rutledge, G.C. (2001). Electrospinning: a whipping fluid jet generates submicron polymer fibers, Applied Physics Letters 78(8): 1149–1151, doi: 10.1063/1.1345798.
  • Skoog, D.A., Holler, F.J., Crouch, S.R. (2007). Principles of instrumental analysis. Thomson Brooks/Cole, Pacific Grove, Canada, 1039p.
  • Smiddy, M., Papkovsky, D.B., Kerry, J.P. (2002). Evaluation of oxygen content in commercial modified atmosphere packs (MAP) of processed cooked meats. Food Research International 35(6): 571-575. doi: 10.1016/S0963-9969(01)00159-4.
  • Sozer, N., Kokini, J.L. (2008). Nanotechnology and ıts applications in the food sector. Trends Biotechnol 27(2):82-89.
  • Tarhan, Ö., Gökmen, V. ve Harsa, Ş. (2010). Nanoteknolojinin gıda bilim ve teknolojisi alanındaki uygulamaları. Gıda 35(3): 219-225.
  • Tang, X., Liu, Y., Hou, H., You, T. (2011). A Nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta 83(5): 1410–1414, doi: 10.1016/j.talanta.2010.11.019
  • Uylaşer, V., Konak, A. (2004). Gıdalardaki biyojen aminler ve insan sağlığı açısından önemi, Gıda ve Yem Bilimi – Teknolojisi Dergisi (6): 26-33.
  • Valdes, M.G., Gonzalez, A. C. V., Calzon, J. A. G., Diaz-Garcia, M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta 166(1-2): 1–19, doi:10.1007/s00604-009-0165-z
  • Wang J. (2008). Electrochemical glucose biosensor. Chemical Reviews 108(2): 814-825, doi:10.1021/cr068123a.
  • Wang, Z.H., X.Y. Dong, Li, J. (2008). An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sensors Actuators B 131(2): 411-416, doi: 10.1016/j.snb.2007.11.056.
  • Weiss, J., Takhistov, P., Mcclements, D.J. (2006). Functional materials in food nanotechnology. Journal of Food Science 71(9): 107-116, doi: 10.1111/j.1750-3841.2006.00195.x.
  • Wilson, A.D., Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors 9(7): 5099-5148, doi:10.3390/s90705099
  • Yerlikaya, P., Gökoğlu, N. (2002). Gıdalarda biyojen aminler ve önemi. Gıda Mühendisliği Dergisi 6(12): 24-30.
  • Yetim, H. (2002). Enstrümantal Gıda Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum, 341s.
  • Yılmazer, M. (2014). Elektro döndürme yöntemi ile elde edilen karbon nanolif ve karbon nanotüplerin karakterizasyonu ve işlevselleştirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 99s.
  • Yoon, J., Chae, S. K., Kim, J. M. (2007). Colorimetric sensors for volatile organic compounds (vocs) based on conjugated polymer-embedded electrospun fibers. Journal of the American Chemical Society 129 (11): 3038-3039, doi: 10.1021/ja067856+
  • Zen, J.M., Lai, Y.Y., Yang, H.H., Senthil Kumar, A. (2002). Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sensors Actuators B Chemical 84(2-3): 237-244, doi: 10.1016/S0925-4005(02)00031-X
  • Zhang, H., Chang, M., Wang, J. ve Ye, S. (2008). Evaluation of peach quality indices using an electronic nose by mlr, qpst and bp network. Sensors and Actuators B: Chemical 134(1): 332–338, doi: 10.1016/j.snb.2008.05.008.
There are 54 citations in total.

Details

Other ID GD17057
Journal Section Articles
Authors

Aylin Altan Mete

Meryem Yılmaz

Publication Date December 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 6

Cite

APA Altan Mete, A., & Yılmaz, M. (2017). ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI. Gıda, 42(6), 708-725.
AMA Altan Mete A, Yılmaz M. ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI. The Journal of Food. December 2017;42(6):708-725.
Chicago Altan Mete, Aylin, and Meryem Yılmaz. “ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI”. Gıda 42, no. 6 (December 2017): 708-25.
EndNote Altan Mete A, Yılmaz M (December 1, 2017) ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI. Gıda 42 6 708–725.
IEEE A. Altan Mete and M. Yılmaz, “ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI”, The Journal of Food, vol. 42, no. 6, pp. 708–725, 2017.
ISNAD Altan Mete, Aylin - Yılmaz, Meryem. “ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI”. Gıda 42/6 (December 2017), 708-725.
JAMA Altan Mete A, Yılmaz M. ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI. The Journal of Food. 2017;42:708–725.
MLA Altan Mete, Aylin and Meryem Yılmaz. “ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI”. Gıda, vol. 42, no. 6, 2017, pp. 708-25.
Vancouver Altan Mete A, Yılmaz M. ELEKTROEĞİRME YÖNTEMİ VE GIDA ALANINDAKİ NANOSENSÖR UYGULAMALARI. The Journal of Food. 2017;42(6):708-25.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/