Review
BibTex RIS Cite

GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR

Year 2018, Volume: 43 Issue: 1, 101 - 113, 15.01.2018

Abstract

Listeria monocytogenes, bağışıklığı baskılanmış bireylerde gastrointestinal
problemler, nörolojik bozukluklar ve sepsis gibi ciddi semptomlara ve yüksek
ölüm oranına sahip bir gıda patojenidir. Listeriosisin ölümle sonuçlanma oranı
yaklaşık %25, hastaneye kaldırılma oranı ise %95’in üzerindedir. Bu nedenle
günümüzde hâlâ artan bir gıda güvenliği sorununu teşkil etmektedir. Olumsuz
koşullarda uzun süre hayatta kalabilme ve biyofilm oluşturabilme yeteneği
nedeniyle gıda işleme ortamlarının en önemli sorunlarından biri
L.
monocytogenes
ile mücadeledir. Bu mücadelede başlangıç olarak,
mikroorganizmanın kontaminasyon yollarını ve yayılmasına katkıda bulunan
faktörleri bilmek, antilisterial uygulamalar için gerekli olmaktadır. Bu
bilgiler doğrultusunda, doğru tasarlanan tesis, ekipman, temizlik ve sanitasyon
programları, personel eğitimi ve sürekli izleme sistemleri ile etkili bir
mücadele sağlanabilmektedir. Ancak artan bilinç ve önlemlere rağmen, bazı gıda
işletmelerinde ve gıdalarda
L. monocytogenes tespit edilmektedir. Bu
durum
Listeria ile mücadelede antimikrobiyel bileşiklerin kullanımı,
ohmik ısıtma, yüksek basınç uygulaması ve soğuk plazma tekniği gibi birçok yeni
yaklaşımların gerekliliğini ortaya koymaktadır. Bu derlemede,
L.
monocytogenes
in gelişme koşulları, olası kontaminasyon kaynakları, gıda
işleme tesislerinde yapılması gereken uygulamalar ve mücadelede yeni
yaklaşımların verilmesi amaçlanmıştır. 

References

  • Aarnisalo, K., Tallavaara, K., Wirtanen, G., Maijala, R., Raaska, L. (2006). The hygienic working practices of maintenance personnel and equipment hygiene in the Finnish food industry. Food Control, 17: 1001–1011, https://doi.org/10.1016/j.foodcont.2005.07.006.
  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts : The role of thyme essential oil , nisin , and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1): 177–183, http://dx.doi.org/10.1016/j.foodcont.2013.07.004.
  • Aspri, M., Field, D., Cotter, P. D., Ross, P., Hill, C., Papademas, P. (2017). Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk , in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 73: 1–9, http://dx.doi.org/10.1016/j.idairyj.2017.04.008.
  • Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75: 1–13, http://dx.doi.org/10.1016/j.foodcont.2016.12.016.
  • Ciccio, P. D., Meloni, D., Festino, A. R., Conter, M., Zanardi, E., Ghidini, S., Vergara, A., Mazzette, R., Ianieri, A. (2012). Longitudinal study on the sources of Listeria monocytogenes contamination in cold-smoked salmon and its processing environment in Italy. International Journal of Food Microbiology, 158: 79–84, https://doi.org/10.1016/j.ijfoodmicro.2012.06.016.
  • Codex Alimenaturs Comission. (2007). Guidelines on the application of general principles of food hygiene to the control of Listeria monocytogenes in foods. Retrieved from http://www.codexalimentarius.net/download/standards/10740/CXG_061e.pdf.
  • Cutter, C., McElroy, D., Penn, S. (2006). Control of Listeria monocytogenes in Retail Establishments. USDA Food Safety and Inspection Service and the Association of Food and Drug Officials, Pennsylvania, Penn State, 4-19.
  • Fernanda, B. dos R. T., Virgínia, F. A., Elaine, C. P. de M. (2017). Growth , viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces Fernanda Barbosa dos Reis-Teixeira a , Virgínia Farias Alves b ,. Brazilian Journal of Microbiology, 48(3): 587–591, http://dx.doi.org/10.1016/j.bjm.2017.01.004.
  • Food Safety Authority of Ireland. (2005). The Control and Management of Listeria monocytogenes Contamination of Food. Dublin. Retrieved from https://www.fsai.ie/resources_publications.html
  • Fox, E. M., Wall, P. G., Fanning, S. (2015). Control of Listeria species food safety at a poultry food production facility. Food Microbiology, 51: 81–86, http://dx.doi.org/10.1016/j.fm.2015.05.002.
  • Hagens, S., Loessner, M. J. (2010). Bacteriophage for Biocontrol of Foodborne Pathogens : Calculations and Considerations. Current Pharmaceutical Biotechnology, 11(1): 58–68.
  • Hamedi, H., Razavi-Rohani, S. M., Gandomi, H. (2014). Combination Effect of Essential Oils of Some Herbs with Monolaurin on Growth and Survival of Listeria monocytogenes in Culture Media and Cheese. Journal of Food Processing and Preservation, 38: 304–310, https://doi.org/10.1111/j.1745-4549.2012.00778.x.
  • Hammons, S. R., Oliver, H. F. (2014). Listeria monocytogenes, Listeriosis and Control Strategies : What the Retail Deli and Food Safety Manager Need to Know. In J. Farber, J. Crichton, & P. J. Snyder (Eds.), In Retail Food Safety (1st ed., pp. 43–58). New York: Springer US. https://doi.org/10.1007/978-1-4939-1550-7. Hicks, D., Wiedmann, M., Scott, V. N., Collette, R., Jahncke, M. L., Gall, K. (2004). Minimizing Listeria Contamination in Smoked Seafood : Training Plant Personnel. Food Protection Trends, 24(12): 953–960.
  • Hong, Y., Choi, S. T., Lee, B. H., Conway, W. S. (2015). Combining of Bacteriophage and G. asaii Application to Reduce L. monocytogenes on Honeydew Melon Pieces. Food Technol, 3: 115–122.
  • In Lee, S. H., Barancelli, G. V., de Camargo, T. M., Corassin, C. H., Rosim, R. E., da Cruz, A. G., Cappato, L. P., de Oliveira, C. A. F. (2017). Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Research International, 91: 88–91, http://dx.doi.org/10.1016/j.foodres.2016.11.039.
  • Innovation Center for U.S. Dairy. (2015). Control of Listeria monocytogenes. http://www.idfa.org/docs/default-source/resource-library/guidance-for-the-us-dairy-industry-10-19-15.pdf (Accessed: 12 September 2017)
  • Ivana, S., Purkatova, S., Kosova, M., Mihulova, M., Švirakova, E., Demnerova, K. (2014). Antilisterial Activity of Lactic Acid Bacteria against Listeria monocytogenes Strains Originating from Different Sources. Czech Journal of Food Science, 32(2): 145–151.
  • Khan, I., Khan, J., Miskeen, S., Tango, C. N., Park, Y. S., Oh, D. H. (2016). Prevalence and Control of Listeria monocytogenes in the Food Industry – A Review, Czech Journal of Food Science, 34(6): 469–487, https://doi.org/10.17221/21/2016-CJFS.
  • Kim, S., Kang, D. (2017). Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa. Food Control, 80: 29–36, http://dx.doi.org/10.1016/j.foodcont.2017.04.001.
  • Lakicevic, B., Nastasijevic, I. (2017). Listeria monocytogenes in retail establishments : Contamination routes and control strategies Listeria monocytogenes in retail establishments : Contamination. Food Reviews International, 33(3): 247–269, http://dx.doi.org/10.1080/87559129.2016.1175017.
  • Lakicevic, B., Nastasijevic, I., Raseta, M. (2015). Sources of Listeria monocytogenes contamination in retail establishments. Italian Oral Surgery, 5(1): 160–163, https://doi.org/10.1016/j.profoo.2015.09.046.
  • Leong, D., Alvarez-ordóñez, A., Jooste, P., Jordan, K. (2016). Listeria monocytogenes in food : Control by monitoring the food processing environment. African Journal of Microbiology Research, 10(1): 1–14, https://doi.org/10.5897/AJMR2015.7832.
  • Leong, D., Nicaogáin, K., Luque-Sastre, L., Mcmanamon, O., Hunt, K., Alvarez-Ordóñez, A., Scollard, J., Schmalenberger, A., Fanning, S., O’Byrne, C., Jordan, K. (2017). A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology, 249: 18–26, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.015.
  • Lourenço, A., Kamnetz, M. B., Gadotti, C., Diez-Gonzalez, F. (2017). Antimicrobial treatments to control Listeria monocytogenes in queso fresco. Food Microbiology, 64: 47–55, http://dx.doi.org/10.1016/j.fm.2016.12.014.
  • Luchansky, J. B., Chen, Y., Porto-fett, A. C. S., Pouillot, R., Shoyer, B. A., Rycke, R. J. E., Eblen, D. R., Holezer, K., Shaw, W. K., Doren, J. M. V., Catlin, M., Lee, J., Tikekar, R., Gallagher, D., Lindsay, J. A., Dennis, S. (2017). Survey for Listeria monocytogenes in and on Ready-to-Eat Foods from Retail Establishments in the United States ( 2010 through 2013 ): Assessing Potential Changes of Pathogen Prevalence and Levels in a Decade, Journal of Food Protection, 80(6): 903–921, https://doi.org/10.4315/0362-028X.JFP-16-420.
  • Lucore, L. A., Shellhammer, T. H., Yousef, A.E. (2000). Inactivation of Listeria monocytogenes Scott A on Artificially Contaminated Frankfurters by High-Pressure Processing, Journal of Food Protection, 63(5): 662–664.
  • Luksiene, Z., Paskeviciute, E. (2011). Microbial control of food-related surfaces : Na-Chlorophyllin-based photosensitization. Journal of Photochemistry & Photobiology, B: Biology, 105: 69–74, https://doi.org/10.1016/j.jphotobiol.2011.06.011.
  • Luo, L., Zhang, Z., Wang, H., Wang, P., Lan, R., Deng, J., Miao, Y., Wang, Y., Wang, Y, Xu, J., Zhang, L., Sun, S., Liu, X., Zhou, Y., Chen, X., Li, Q., Ye, C. (2017). A 12-month longitudinal study of Listeria monocytogenes contamination and persistence in pork retail markets in China. Food Control, 76: 66–73, http://dx.doi.org/10.1016/j.foodcont.2016.12.037.
  • Marques, J. L., Funck, G. D., Dannenberg, G. da S., Cruxen, C. E. dos S., Halal, S. L. M. El, Dias, A. R. G., Fiorentini, A. M., Silva, W. da P. (2017). Bacteriocin-like substances of Lactobacillus curvatus P99 : characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiology, 63: 159–163, http://dx.doi.org/10.1016/j.fm.2016.11.008
  • Meat and Livestok Australia. (2006). Listeria monocytogenes in smallgoods: risks and controls. Meat and Livestock Australia Limited. Sydney. Retrieved from https://www.mla.com.au/research-and-development/search-rd-reports/final-report-details/Product-Integrity/Listeria-monocytogenes-in-smallgoods-risks-and-controls/2328
  • Melo, J., Andrew, P. W., Faleiro, M. L. (2015). Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge : The role of stress responses. Food Research International, 67: 75–90, http://dx.doi.org/10.1016/j.foodres.2014.10.031.
  • Mikš-Krajnik, M., Feng, L. X. J., Bang W. S., Yuk, H.-G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water , ultraviolet light or / and ultrasounds. Food Control, 74: 54–60, http://dx.doi.org/10.1016/j.foodcont.2016.11.033.
  • Muhterem-Uyar, M., Dalmasso, M., Bolocan, A. S., Hernandez, M., Kapetanakou, A. E., Kuchta, T., Manios, S. G., Melero, B., Minarovicova, J., Nicolau, A. I., Rovira, J., Skandamis, N. P., Jordan, K., Rodriguez-Lazaro, D., Stessl, B., Wagner, M. (2015). Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control, 51: 94–107, http://dx.doi.org/10.1016/j.foodcont.2014.10.042.
  • Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., Vliet, A. H. M. Van, Fletcher, G. C., Hedderley, D., Palmer, J., Flint, S. (2017). Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. International Journal of Food Microbiology, 256: 45–53, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.05.024
  • NSW Government. (2016). Controlling Listeria monocytogenes in the Food Processing Environment. Newington.
  • Oloketuyi, S. F., Khan, F. (2017). Inhibition strategies of Listeria monocytogenes biofilms current knowledge and future outlooks, Journal of Basic Microbiology, 9999: 1-16, https://doi.org/10.1002/jobm.201700071.
  • Redfern, J., Verran, J. (2017). Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces, Letters in Applied Microbiology, 64: 276-282, https://doi.org/10.1111/lam.12714.
  • Rodrigues, C. S., Cláudia, R., Cordeiro , C. V. G., Melo, C. B., (2017). An overview of Listeria monocytogenes contamination in ready to eat meat , dairy and fishery foods. Ciência Rural, 47(2): 1–8, http://dx.doi.org/10.1590/0103-8478cr20160721.
  • Sadekuzzaman, M., Yang, S., Mizan, Md. F. R., Kim, H.-S., Ha, S.-D. (2017). Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control, 78: 256–263, http://dx.doi.org/10.1016/j.foodcont.2016.10.056.
  • Saini, J. K., Barrios, M. A., Marsden, J. L., Getty, K. J. K., Fung, D. Y. C. (2013). Efficacy of Antimicrobial Lauric Arginate against Listeria monocytogenes on Stainless Steel Coupons. Advances in Microbiology, 3(1): 65–68, http://dx.doi.org/10.4236/aim.2013.31010.
  • Schäfer, D. F., Steffens, J., Barbosa, J., Zeni, J., Paroul, N., Valduga, E., Junges, A., Backes, G. T., Cansian, R. L. (2017). Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT - Food Science and Technology, 86: 393–398, http://dx.doi.org/10.1016/j.lwt.2017.08.024
  • Schöbitz, R., González, C., Villarreal, K., Horzella, M., Nahuelquín, Y., Fuentes, R. (2014). A biocontroller to eliminate Listeria monocytogenes from the food processing environment. Food Control, 36: 217–223, http://dx.doi.org/10.1016/j.foodcont.2013.08.017
  • Simmons, C. K., Wiedmann, M. (2017). Identification and classification of sampling sites for pathogen environmental monitoring programs for Listeria monocytogenes: Results from an expert elicitation. Food Microbiology(In press), https://doi.org/10.1016/j.fm.2017.07.005
  • Simoes, M., Simoes, L. C., Vieira, M. J.(2010). A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43: 573–583, https://doi.org/10.1016/j.lwt.2009.12.008.
  • Son, H., Kang, J., Song, K. B. (2017). Antimicrobial activity of saf flower seed meal extract and its application as an antimicrobial agent for the inactivation of Listeria monocytogenes inoculated on fresh lettuce. LWT - Food Science and Technology, 85: 52–57, http://dx.doi.org/10.1016/j.lwt.2017.06.063.
  • Stasiewicz, M. J., Wiedmann, M., Bergholz, T. M. (2011). The Transcriptional Response of Listeria monocytogenes during Adaptation to Growth on Lactate and Diacetate Includes Synergistic Changes That Increase Fermentative Acetoin Production. Applied and Environmental Microbiology, 77(15): 5294–5306, https://doi.org/10.1128/AEM.02976-10.
  • Strydom, A., Vorster, R., Gouws, P. A., Witthuhn, R. C. (2016). Successful management of Listeria spp. in an avocado processing facility. Food Control, 62: 208–215, http://dx.doi.org/10.1016/j.foodcont.2015.10.043.
  • Tompkin, R. B. (2002). Control of Listeria monocytogenes in the Food-Processing Environment, Journal of Food Protection, 65(4): 709–725.
  • Upadhyay, A., Upadhyaya, I., Karumathil, D. P., Yin, H., Nair, M. S., Bhattaram, V., Chen, C., Flock, G., Mooyottu, S., Venkitanarayanan, K. (2015). Control of Listeria monocytogenes on skinless frankfurters by coating with phytochemicals. LWT - Food Science and Technology, 63: 37–42, http://dx.doi.org/10.1016/j.lwt.2015.03.100
  • Vaz-Velho, M., Silva, M., Pessoa, J., Gibbs, P. (2006). Inactivation by ozone of Listeria innocua on salmon-trout during cold-smoke processing, Food Control, 17: 609–616, https://doi.org/10.1016/j.foodcont.2005.03.007
  • Välimaa, A. L., Tilsala-Timisjarvi, A., Virtanen., E. (2015). Rapid detection and identification methods for Listeria monocytogenes in the food chain- A review. Food Control, 55: 103–114, http://dx.doi.org/10.1016/j.foodcont.2015.02.037.
  • World Health Organization, States, F. and A. O. of the U. (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods. Rome. Retrieved from http://www.fao.org/docrep/010/y5394e/y5394e00.htm
  • Wu, S., Yu, P. L., Flint, S. (2017). Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control, 77: 243–250, http://dx.doi.org/10.1016/j.foodcont.2017.02.011.
  • Yang, S., Sadekuzzaman, M., Ha, S.-D (2017). Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control, 78: 57–63, http://dx.doi.org/10.1016/j.foodcont.2017.02.021.
  • Zhu, Q., Gooneratne, R., Hussain, M. A. (2017). Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods, 6(3): 1–11, https://doi.org/10.3390/foods6030021.

LISTERIA MONOCYTOGENES IN FOOD FACILITIES AND NEW APPROACHES FOR STRUGGLE

Year 2018, Volume: 43 Issue: 1, 101 - 113, 15.01.2018

Abstract

Listeria
monocytogenes
is a food pathogen with high mortality and severe
symptoms such as gastrointestinal, sepsis, neurological disorders in
immuno-suppressed individuals. The mortality rate of listeriosis is about 25%
and the rate of hospitalization is over 95%. For this reason, it is still an
increasing problem of food safety. One of the most important problems of food
processing environments is the struggle against
L. monocytogenes because
of its ability to survive for long time under adverse conditions and to be
capable of producing biofilm. As a starting point in this struggle, it is
necessary for anti-listerial applications to know the ways in which
microorganisms are contaminated and the factors contributing to their growth
and spread. In line with this information, an effective struggle can be
achieved with properly designed facilities and equipment, cleaning and
sanitation programs, staff training and continuous monitoring systems. However,
despite increased awareness and precautions,
L. monocytogenes are
detected in some food processing facilities and in foods. This necessitates
many new approaches such as the use of antimicrobial compounds in combating
against
Listeria, ohmic heating, high pressure application and cold
plasma technique. In this review, growth conditions of
L. monocytogenes,
potential sources of contamination, applications to be made in food processing
plants and new approaches to struggle are given. 

References

  • Aarnisalo, K., Tallavaara, K., Wirtanen, G., Maijala, R., Raaska, L. (2006). The hygienic working practices of maintenance personnel and equipment hygiene in the Finnish food industry. Food Control, 17: 1001–1011, https://doi.org/10.1016/j.foodcont.2005.07.006.
  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts : The role of thyme essential oil , nisin , and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1): 177–183, http://dx.doi.org/10.1016/j.foodcont.2013.07.004.
  • Aspri, M., Field, D., Cotter, P. D., Ross, P., Hill, C., Papademas, P. (2017). Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk , in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 73: 1–9, http://dx.doi.org/10.1016/j.idairyj.2017.04.008.
  • Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75: 1–13, http://dx.doi.org/10.1016/j.foodcont.2016.12.016.
  • Ciccio, P. D., Meloni, D., Festino, A. R., Conter, M., Zanardi, E., Ghidini, S., Vergara, A., Mazzette, R., Ianieri, A. (2012). Longitudinal study on the sources of Listeria monocytogenes contamination in cold-smoked salmon and its processing environment in Italy. International Journal of Food Microbiology, 158: 79–84, https://doi.org/10.1016/j.ijfoodmicro.2012.06.016.
  • Codex Alimenaturs Comission. (2007). Guidelines on the application of general principles of food hygiene to the control of Listeria monocytogenes in foods. Retrieved from http://www.codexalimentarius.net/download/standards/10740/CXG_061e.pdf.
  • Cutter, C., McElroy, D., Penn, S. (2006). Control of Listeria monocytogenes in Retail Establishments. USDA Food Safety and Inspection Service and the Association of Food and Drug Officials, Pennsylvania, Penn State, 4-19.
  • Fernanda, B. dos R. T., Virgínia, F. A., Elaine, C. P. de M. (2017). Growth , viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces Fernanda Barbosa dos Reis-Teixeira a , Virgínia Farias Alves b ,. Brazilian Journal of Microbiology, 48(3): 587–591, http://dx.doi.org/10.1016/j.bjm.2017.01.004.
  • Food Safety Authority of Ireland. (2005). The Control and Management of Listeria monocytogenes Contamination of Food. Dublin. Retrieved from https://www.fsai.ie/resources_publications.html
  • Fox, E. M., Wall, P. G., Fanning, S. (2015). Control of Listeria species food safety at a poultry food production facility. Food Microbiology, 51: 81–86, http://dx.doi.org/10.1016/j.fm.2015.05.002.
  • Hagens, S., Loessner, M. J. (2010). Bacteriophage for Biocontrol of Foodborne Pathogens : Calculations and Considerations. Current Pharmaceutical Biotechnology, 11(1): 58–68.
  • Hamedi, H., Razavi-Rohani, S. M., Gandomi, H. (2014). Combination Effect of Essential Oils of Some Herbs with Monolaurin on Growth and Survival of Listeria monocytogenes in Culture Media and Cheese. Journal of Food Processing and Preservation, 38: 304–310, https://doi.org/10.1111/j.1745-4549.2012.00778.x.
  • Hammons, S. R., Oliver, H. F. (2014). Listeria monocytogenes, Listeriosis and Control Strategies : What the Retail Deli and Food Safety Manager Need to Know. In J. Farber, J. Crichton, & P. J. Snyder (Eds.), In Retail Food Safety (1st ed., pp. 43–58). New York: Springer US. https://doi.org/10.1007/978-1-4939-1550-7. Hicks, D., Wiedmann, M., Scott, V. N., Collette, R., Jahncke, M. L., Gall, K. (2004). Minimizing Listeria Contamination in Smoked Seafood : Training Plant Personnel. Food Protection Trends, 24(12): 953–960.
  • Hong, Y., Choi, S. T., Lee, B. H., Conway, W. S. (2015). Combining of Bacteriophage and G. asaii Application to Reduce L. monocytogenes on Honeydew Melon Pieces. Food Technol, 3: 115–122.
  • In Lee, S. H., Barancelli, G. V., de Camargo, T. M., Corassin, C. H., Rosim, R. E., da Cruz, A. G., Cappato, L. P., de Oliveira, C. A. F. (2017). Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Research International, 91: 88–91, http://dx.doi.org/10.1016/j.foodres.2016.11.039.
  • Innovation Center for U.S. Dairy. (2015). Control of Listeria monocytogenes. http://www.idfa.org/docs/default-source/resource-library/guidance-for-the-us-dairy-industry-10-19-15.pdf (Accessed: 12 September 2017)
  • Ivana, S., Purkatova, S., Kosova, M., Mihulova, M., Švirakova, E., Demnerova, K. (2014). Antilisterial Activity of Lactic Acid Bacteria against Listeria monocytogenes Strains Originating from Different Sources. Czech Journal of Food Science, 32(2): 145–151.
  • Khan, I., Khan, J., Miskeen, S., Tango, C. N., Park, Y. S., Oh, D. H. (2016). Prevalence and Control of Listeria monocytogenes in the Food Industry – A Review, Czech Journal of Food Science, 34(6): 469–487, https://doi.org/10.17221/21/2016-CJFS.
  • Kim, S., Kang, D. (2017). Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa. Food Control, 80: 29–36, http://dx.doi.org/10.1016/j.foodcont.2017.04.001.
  • Lakicevic, B., Nastasijevic, I. (2017). Listeria monocytogenes in retail establishments : Contamination routes and control strategies Listeria monocytogenes in retail establishments : Contamination. Food Reviews International, 33(3): 247–269, http://dx.doi.org/10.1080/87559129.2016.1175017.
  • Lakicevic, B., Nastasijevic, I., Raseta, M. (2015). Sources of Listeria monocytogenes contamination in retail establishments. Italian Oral Surgery, 5(1): 160–163, https://doi.org/10.1016/j.profoo.2015.09.046.
  • Leong, D., Alvarez-ordóñez, A., Jooste, P., Jordan, K. (2016). Listeria monocytogenes in food : Control by monitoring the food processing environment. African Journal of Microbiology Research, 10(1): 1–14, https://doi.org/10.5897/AJMR2015.7832.
  • Leong, D., Nicaogáin, K., Luque-Sastre, L., Mcmanamon, O., Hunt, K., Alvarez-Ordóñez, A., Scollard, J., Schmalenberger, A., Fanning, S., O’Byrne, C., Jordan, K. (2017). A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology, 249: 18–26, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.015.
  • Lourenço, A., Kamnetz, M. B., Gadotti, C., Diez-Gonzalez, F. (2017). Antimicrobial treatments to control Listeria monocytogenes in queso fresco. Food Microbiology, 64: 47–55, http://dx.doi.org/10.1016/j.fm.2016.12.014.
  • Luchansky, J. B., Chen, Y., Porto-fett, A. C. S., Pouillot, R., Shoyer, B. A., Rycke, R. J. E., Eblen, D. R., Holezer, K., Shaw, W. K., Doren, J. M. V., Catlin, M., Lee, J., Tikekar, R., Gallagher, D., Lindsay, J. A., Dennis, S. (2017). Survey for Listeria monocytogenes in and on Ready-to-Eat Foods from Retail Establishments in the United States ( 2010 through 2013 ): Assessing Potential Changes of Pathogen Prevalence and Levels in a Decade, Journal of Food Protection, 80(6): 903–921, https://doi.org/10.4315/0362-028X.JFP-16-420.
  • Lucore, L. A., Shellhammer, T. H., Yousef, A.E. (2000). Inactivation of Listeria monocytogenes Scott A on Artificially Contaminated Frankfurters by High-Pressure Processing, Journal of Food Protection, 63(5): 662–664.
  • Luksiene, Z., Paskeviciute, E. (2011). Microbial control of food-related surfaces : Na-Chlorophyllin-based photosensitization. Journal of Photochemistry & Photobiology, B: Biology, 105: 69–74, https://doi.org/10.1016/j.jphotobiol.2011.06.011.
  • Luo, L., Zhang, Z., Wang, H., Wang, P., Lan, R., Deng, J., Miao, Y., Wang, Y., Wang, Y, Xu, J., Zhang, L., Sun, S., Liu, X., Zhou, Y., Chen, X., Li, Q., Ye, C. (2017). A 12-month longitudinal study of Listeria monocytogenes contamination and persistence in pork retail markets in China. Food Control, 76: 66–73, http://dx.doi.org/10.1016/j.foodcont.2016.12.037.
  • Marques, J. L., Funck, G. D., Dannenberg, G. da S., Cruxen, C. E. dos S., Halal, S. L. M. El, Dias, A. R. G., Fiorentini, A. M., Silva, W. da P. (2017). Bacteriocin-like substances of Lactobacillus curvatus P99 : characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiology, 63: 159–163, http://dx.doi.org/10.1016/j.fm.2016.11.008
  • Meat and Livestok Australia. (2006). Listeria monocytogenes in smallgoods: risks and controls. Meat and Livestock Australia Limited. Sydney. Retrieved from https://www.mla.com.au/research-and-development/search-rd-reports/final-report-details/Product-Integrity/Listeria-monocytogenes-in-smallgoods-risks-and-controls/2328
  • Melo, J., Andrew, P. W., Faleiro, M. L. (2015). Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge : The role of stress responses. Food Research International, 67: 75–90, http://dx.doi.org/10.1016/j.foodres.2014.10.031.
  • Mikš-Krajnik, M., Feng, L. X. J., Bang W. S., Yuk, H.-G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water , ultraviolet light or / and ultrasounds. Food Control, 74: 54–60, http://dx.doi.org/10.1016/j.foodcont.2016.11.033.
  • Muhterem-Uyar, M., Dalmasso, M., Bolocan, A. S., Hernandez, M., Kapetanakou, A. E., Kuchta, T., Manios, S. G., Melero, B., Minarovicova, J., Nicolau, A. I., Rovira, J., Skandamis, N. P., Jordan, K., Rodriguez-Lazaro, D., Stessl, B., Wagner, M. (2015). Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control, 51: 94–107, http://dx.doi.org/10.1016/j.foodcont.2014.10.042.
  • Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., Vliet, A. H. M. Van, Fletcher, G. C., Hedderley, D., Palmer, J., Flint, S. (2017). Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. International Journal of Food Microbiology, 256: 45–53, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.05.024
  • NSW Government. (2016). Controlling Listeria monocytogenes in the Food Processing Environment. Newington.
  • Oloketuyi, S. F., Khan, F. (2017). Inhibition strategies of Listeria monocytogenes biofilms current knowledge and future outlooks, Journal of Basic Microbiology, 9999: 1-16, https://doi.org/10.1002/jobm.201700071.
  • Redfern, J., Verran, J. (2017). Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces, Letters in Applied Microbiology, 64: 276-282, https://doi.org/10.1111/lam.12714.
  • Rodrigues, C. S., Cláudia, R., Cordeiro , C. V. G., Melo, C. B., (2017). An overview of Listeria monocytogenes contamination in ready to eat meat , dairy and fishery foods. Ciência Rural, 47(2): 1–8, http://dx.doi.org/10.1590/0103-8478cr20160721.
  • Sadekuzzaman, M., Yang, S., Mizan, Md. F. R., Kim, H.-S., Ha, S.-D. (2017). Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control, 78: 256–263, http://dx.doi.org/10.1016/j.foodcont.2016.10.056.
  • Saini, J. K., Barrios, M. A., Marsden, J. L., Getty, K. J. K., Fung, D. Y. C. (2013). Efficacy of Antimicrobial Lauric Arginate against Listeria monocytogenes on Stainless Steel Coupons. Advances in Microbiology, 3(1): 65–68, http://dx.doi.org/10.4236/aim.2013.31010.
  • Schäfer, D. F., Steffens, J., Barbosa, J., Zeni, J., Paroul, N., Valduga, E., Junges, A., Backes, G. T., Cansian, R. L. (2017). Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT - Food Science and Technology, 86: 393–398, http://dx.doi.org/10.1016/j.lwt.2017.08.024
  • Schöbitz, R., González, C., Villarreal, K., Horzella, M., Nahuelquín, Y., Fuentes, R. (2014). A biocontroller to eliminate Listeria monocytogenes from the food processing environment. Food Control, 36: 217–223, http://dx.doi.org/10.1016/j.foodcont.2013.08.017
  • Simmons, C. K., Wiedmann, M. (2017). Identification and classification of sampling sites for pathogen environmental monitoring programs for Listeria monocytogenes: Results from an expert elicitation. Food Microbiology(In press), https://doi.org/10.1016/j.fm.2017.07.005
  • Simoes, M., Simoes, L. C., Vieira, M. J.(2010). A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43: 573–583, https://doi.org/10.1016/j.lwt.2009.12.008.
  • Son, H., Kang, J., Song, K. B. (2017). Antimicrobial activity of saf flower seed meal extract and its application as an antimicrobial agent for the inactivation of Listeria monocytogenes inoculated on fresh lettuce. LWT - Food Science and Technology, 85: 52–57, http://dx.doi.org/10.1016/j.lwt.2017.06.063.
  • Stasiewicz, M. J., Wiedmann, M., Bergholz, T. M. (2011). The Transcriptional Response of Listeria monocytogenes during Adaptation to Growth on Lactate and Diacetate Includes Synergistic Changes That Increase Fermentative Acetoin Production. Applied and Environmental Microbiology, 77(15): 5294–5306, https://doi.org/10.1128/AEM.02976-10.
  • Strydom, A., Vorster, R., Gouws, P. A., Witthuhn, R. C. (2016). Successful management of Listeria spp. in an avocado processing facility. Food Control, 62: 208–215, http://dx.doi.org/10.1016/j.foodcont.2015.10.043.
  • Tompkin, R. B. (2002). Control of Listeria monocytogenes in the Food-Processing Environment, Journal of Food Protection, 65(4): 709–725.
  • Upadhyay, A., Upadhyaya, I., Karumathil, D. P., Yin, H., Nair, M. S., Bhattaram, V., Chen, C., Flock, G., Mooyottu, S., Venkitanarayanan, K. (2015). Control of Listeria monocytogenes on skinless frankfurters by coating with phytochemicals. LWT - Food Science and Technology, 63: 37–42, http://dx.doi.org/10.1016/j.lwt.2015.03.100
  • Vaz-Velho, M., Silva, M., Pessoa, J., Gibbs, P. (2006). Inactivation by ozone of Listeria innocua on salmon-trout during cold-smoke processing, Food Control, 17: 609–616, https://doi.org/10.1016/j.foodcont.2005.03.007
  • Välimaa, A. L., Tilsala-Timisjarvi, A., Virtanen., E. (2015). Rapid detection and identification methods for Listeria monocytogenes in the food chain- A review. Food Control, 55: 103–114, http://dx.doi.org/10.1016/j.foodcont.2015.02.037.
  • World Health Organization, States, F. and A. O. of the U. (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods. Rome. Retrieved from http://www.fao.org/docrep/010/y5394e/y5394e00.htm
  • Wu, S., Yu, P. L., Flint, S. (2017). Persister cell formation of Listeria monocytogenes in response to natural antimicrobial agent nisin. Food Control, 77: 243–250, http://dx.doi.org/10.1016/j.foodcont.2017.02.011.
  • Yang, S., Sadekuzzaman, M., Ha, S.-D (2017). Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control, 78: 57–63, http://dx.doi.org/10.1016/j.foodcont.2017.02.021.
  • Zhu, Q., Gooneratne, R., Hussain, M. A. (2017). Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods, 6(3): 1–11, https://doi.org/10.3390/foods6030021.
There are 55 citations in total.

Details

Other ID GD17090
Journal Section Articles
Authors

Seda Altuntaş

Mihriban Korukluoğlu

Publication Date January 15, 2018
Published in Issue Year 2018 Volume: 43 Issue: 1

Cite

APA Altuntaş, S., & Korukluoğlu, M. (2018). GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR. Gıda, 43(1), 101-113.
AMA Altuntaş S, Korukluoğlu M. GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR. The Journal of Food. January 2018;43(1):101-113.
Chicago Altuntaş, Seda, and Mihriban Korukluoğlu. “GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR”. Gıda 43, no. 1 (January 2018): 101-13.
EndNote Altuntaş S, Korukluoğlu M (January 1, 2018) GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR. Gıda 43 1 101–113.
IEEE S. Altuntaş and M. Korukluoğlu, “GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR”, The Journal of Food, vol. 43, no. 1, pp. 101–113, 2018.
ISNAD Altuntaş, Seda - Korukluoğlu, Mihriban. “GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR”. Gıda 43/1 (January 2018), 101-113.
JAMA Altuntaş S, Korukluoğlu M. GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR. The Journal of Food. 2018;43:101–113.
MLA Altuntaş, Seda and Mihriban Korukluoğlu. “GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR”. Gıda, vol. 43, no. 1, 2018, pp. 101-13.
Vancouver Altuntaş S, Korukluoğlu M. GIDA İŞLEME TESİSLERİNDE LISTERIA MONOCYTOGENES VE MÜCADELEDE YENİ YAKLAŞIMLAR. The Journal of Food. 2018;43(1):101-13.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/