Research Article
BibTex RIS Cite

YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ

Year 2019, Volume: 44 Issue: 2, 291 - 300, 15.04.2019
https://doi.org/10.15237/gida.GD18091

Abstract

İkinci nesil biyoyakıtların önemi her geçen gün
artmaktadır. Yer fıstığı ülkemizde bol miktarda yetişen bir tarım ürünüdür.
Lignoselülozik bir tarımsal atık olan yer fıstığı kabuğu ikinci nesil biyoyakıt
üretiminde biyokütle olarak kullanılabilmektedir. Yapılan deneylerde, üretilen
biyoetanolü optimize etmek amacıyla farklı kabuk konsantrasyonları, hidroliz
koşulları, Accellerase 1500 enzim kullanımı, inkübasyon koşulları, inokülasyon
oranı ve farklı azot kaynakları denenmiştir. Denemeler sonucunda, enzimatik
hidrolizle %10 kabuk ve 1 g/L soya unu ile hazırlanan besiyerlerinde, 12
saatte, aerobik koşullarda ve maya optik yoğunluğu 0.86 olduğunda etanol
üretiminin 2.24 g/L olduğu belirlenmiştir. İnokülasyon oranı ve inkübasyon
süresi arttığında maya gelişimi OD
600: 6.0’a kadar yükselmiş ancak
etanol üretimi düşmüştür.

References

  • Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R.M., Aguilar, C.N., Garrote, G., Ruiz, H.A., (2017). Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 243, 273–283. https://doi.org/10.1016/j.biortech.2017.06.096
  • Arı, T., Dönmez, S., (1999). Melastan Etil Alkol Üretiminde Soya Ununun Alkol ve Hücre Konsantrasyonuna Etkisi. Turkish J. Biol. 24, 573–584.
  • Bely, M., Sablayrolles, J.-M., Barre, P., (1990). Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 70, 246–252. https://doi.org/10.1016/0922-338X(90)90057-4
  • Carneiro, A.P., Rodr�guez, O., Macedo, E.A., (2017). Dissolution and fractionation of nut shells in ionic liquids. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.11.112
  • Cho, D.H., Shin, S.J., Bae, Y., Park, C., Kim, Y.H., (2011). Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour. Technol. 102, 4439–4443. https://doi.org/10.1016/j.biortech.2010.12.094
  • Dadi, A.P., Varanasi, S., Schall, C.A., (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904–910. https://doi.org/10.1002/bit.21047
  • Demirbaş, A., (1999). Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 24, 141–150. https://doi.org/10.1016/S0360-5442(98)00077-2
  • Dussán, K.J., Silva, D.D. V, Moraes, E.J.C., Priscila, V., Felipe, M.G. a, (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem. Eng. Trans. 38, 433–438. https://doi.org/10.3303/CET1438073
  • Frei, M., (2013). Lignin: Characterization of a multifaceted crop component. Sci. World J. 2013. https://doi.org/10.1155/2013/436517
  • García-Ríos, E., Gutiérrez, A., Salvadó, Z.Z., Arroyo-López, F.N., Guillamon, J.M., (2014). The Fitness Advantage of Commercial Wine Yeasts in Relation to the Nitrogen Concentration, Temperature, and Ethanol Content under Microvinification Conditions. Appl. Environ. Microbiol. 80, 704–713. https://doi.org/10.1128/AEM.03405-13
  • Leitner, V., Lindorfer, J., (2016). Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renew. Energy 87, 193–202. https://doi.org/10.1016/j.renene.2015.09.037
  • Martín, C., Thomsen, A.B., (2007). Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 82, 174–181. https://doi.org/10.1002/jctb.1648
  • Naz, A.A., Reinert, S., Bostanci, C., Seperi, B., Leon, J., Böttger, C., Südekum, K.-H., Frei, M., (2017). Mining the global diversity for bioenergy traits of barley straw: Genomewide association study under varying plant water status. GCB Bioenergy. https://doi.org/10.1111/gcbb.12433
  • Polachini, T.C., Sato, A.C.K., Cunha, R.L., Telis-Romero, J., (2016). Density and rheology of acid suspensions of peanut waste in different conditions: An engineering basis for bioethanol production. Powder Technol. 294, 168–176. https://doi.org/10.1016/j.powtec.2016.02.022
  • Putra, M.D., Abasaeed, A.E., Atiyeh, H.K., Al-Zahrani, S.M., Gaily, M.H., Sulieman, A.K., Zeinelabdeen, M.A., (2015). Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. Chem. Eng. Commun. 202, 1618–1627. https://doi.org/10.1080/00986445.2014.968711
  • Rouhollah, H., Iraj, N., Giti, E., Sorah, A., (2007). Mixed sugar fermentation by Pichia stipitis , Sacharomyces cerevisiaea , and an isolated xylose- fermenting Kluyveromyces marxianus and their cocultures. African J. Biotechnol. 6, 1110–1114.
  • Saha, B.C., Cotta, M.A., (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol. Prog. 22, 449–453. https://doi.org/10.1021/bp050310r
  • Soccol, C.R., Vandenberghe, L.P. de S., Medeiros, A.B.P., Karp, S.G., Buckeridge, M., Ramos, L.P., Pitarelo, A.P., Ferreira-Leitão, V., Gottschalk, L.M.F., Ferrara, M.A., Silva Bon, E.P. da, Moraes, L.M.P. de, Araújo, J. de A., Torres, F.A.G., (2010). Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. 101, 4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067
  • Trigueros, D.E.G., Fiorese, M.L., Kroumov, A.D., Hinterholz, C.L., Nadai, B.L., Assunção, G.M., (2016). Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochem. Eng. J. 110, 71–83. https://doi.org/10.1016/j.bej.2016.02.014
  • Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., (2012). Valorization of biomass: Deriving more value from waste. Science (80-. ). https://doi.org/10.1126/science.1218930
  • Wang, W., Kang, L., Wei, H., Arora, R., Lee, Y.Y., (2011). Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl. Biochem. Biotechnol. 164, 1139–1149. https://doi.org/10.1007/s12010-011-9200-8

BIOETHANOL PRODUCTION FROM PEANUT SHELL

Year 2019, Volume: 44 Issue: 2, 291 - 300, 15.04.2019
https://doi.org/10.15237/gida.GD18091

Abstract

The importance of second generation biofuels is
increasing day by day. Peanut is an agricultural product that is abundantly
produced in Turkey. Peanut shell which is a lignocellulosic agricultural
biomass may be used to produce biofuel. In experiments to optimise bioethanol
production,
different shell loading concentrations, pretreatment conditions, the
usage of Accellerase 1500 enzyme, incubation conditions, inoculation ratios and
different nitrogen source were studied. In the media preparing with peanut
shell sugar, obtaining after enzymatic hydrolysis, the bioethanol concentration
and yeast growth was obtained as 2.24 g/L and 0.86 (OD
600) in the
presence of 10% shell loading and 1 g/L soy flour at the end of 12 hours
  incubation time in aerobic conditions. Higher
yeast growth such as 6.0 (OD
600), lower bioethanol production were
obtained when the inoculation ratio and incubation times were increased.

References

  • Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R.M., Aguilar, C.N., Garrote, G., Ruiz, H.A., (2017). Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 243, 273–283. https://doi.org/10.1016/j.biortech.2017.06.096
  • Arı, T., Dönmez, S., (1999). Melastan Etil Alkol Üretiminde Soya Ununun Alkol ve Hücre Konsantrasyonuna Etkisi. Turkish J. Biol. 24, 573–584.
  • Bely, M., Sablayrolles, J.-M., Barre, P., (1990). Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 70, 246–252. https://doi.org/10.1016/0922-338X(90)90057-4
  • Carneiro, A.P., Rodr�guez, O., Macedo, E.A., (2017). Dissolution and fractionation of nut shells in ionic liquids. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.11.112
  • Cho, D.H., Shin, S.J., Bae, Y., Park, C., Kim, Y.H., (2011). Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour. Technol. 102, 4439–4443. https://doi.org/10.1016/j.biortech.2010.12.094
  • Dadi, A.P., Varanasi, S., Schall, C.A., (2006). Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904–910. https://doi.org/10.1002/bit.21047
  • Demirbaş, A., (1999). Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 24, 141–150. https://doi.org/10.1016/S0360-5442(98)00077-2
  • Dussán, K.J., Silva, D.D. V, Moraes, E.J.C., Priscila, V., Felipe, M.G. a, (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem. Eng. Trans. 38, 433–438. https://doi.org/10.3303/CET1438073
  • Frei, M., (2013). Lignin: Characterization of a multifaceted crop component. Sci. World J. 2013. https://doi.org/10.1155/2013/436517
  • García-Ríos, E., Gutiérrez, A., Salvadó, Z.Z., Arroyo-López, F.N., Guillamon, J.M., (2014). The Fitness Advantage of Commercial Wine Yeasts in Relation to the Nitrogen Concentration, Temperature, and Ethanol Content under Microvinification Conditions. Appl. Environ. Microbiol. 80, 704–713. https://doi.org/10.1128/AEM.03405-13
  • Leitner, V., Lindorfer, J., (2016). Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renew. Energy 87, 193–202. https://doi.org/10.1016/j.renene.2015.09.037
  • Martín, C., Thomsen, A.B., (2007). Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. J. Chem. Technol. Biotechnol. 82, 174–181. https://doi.org/10.1002/jctb.1648
  • Naz, A.A., Reinert, S., Bostanci, C., Seperi, B., Leon, J., Böttger, C., Südekum, K.-H., Frei, M., (2017). Mining the global diversity for bioenergy traits of barley straw: Genomewide association study under varying plant water status. GCB Bioenergy. https://doi.org/10.1111/gcbb.12433
  • Polachini, T.C., Sato, A.C.K., Cunha, R.L., Telis-Romero, J., (2016). Density and rheology of acid suspensions of peanut waste in different conditions: An engineering basis for bioethanol production. Powder Technol. 294, 168–176. https://doi.org/10.1016/j.powtec.2016.02.022
  • Putra, M.D., Abasaeed, A.E., Atiyeh, H.K., Al-Zahrani, S.M., Gaily, M.H., Sulieman, A.K., Zeinelabdeen, M.A., (2015). Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. Chem. Eng. Commun. 202, 1618–1627. https://doi.org/10.1080/00986445.2014.968711
  • Rouhollah, H., Iraj, N., Giti, E., Sorah, A., (2007). Mixed sugar fermentation by Pichia stipitis , Sacharomyces cerevisiaea , and an isolated xylose- fermenting Kluyveromyces marxianus and their cocultures. African J. Biotechnol. 6, 1110–1114.
  • Saha, B.C., Cotta, M.A., (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol. Prog. 22, 449–453. https://doi.org/10.1021/bp050310r
  • Soccol, C.R., Vandenberghe, L.P. de S., Medeiros, A.B.P., Karp, S.G., Buckeridge, M., Ramos, L.P., Pitarelo, A.P., Ferreira-Leitão, V., Gottschalk, L.M.F., Ferrara, M.A., Silva Bon, E.P. da, Moraes, L.M.P. de, Araújo, J. de A., Torres, F.A.G., (2010). Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. 101, 4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067
  • Trigueros, D.E.G., Fiorese, M.L., Kroumov, A.D., Hinterholz, C.L., Nadai, B.L., Assunção, G.M., (2016). Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochem. Eng. J. 110, 71–83. https://doi.org/10.1016/j.bej.2016.02.014
  • Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., (2012). Valorization of biomass: Deriving more value from waste. Science (80-. ). https://doi.org/10.1126/science.1218930
  • Wang, W., Kang, L., Wei, H., Arora, R., Lee, Y.Y., (2011). Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl. Biochem. Biotechnol. 164, 1139–1149. https://doi.org/10.1007/s12010-011-9200-8
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Cihan Bostancı 0000-0001-7846-9181

Sevgi Ertuğrul Karatay

Gönül Dönmez

Publication Date April 15, 2019
Published in Issue Year 2019 Volume: 44 Issue: 2

Cite

APA Bostancı, C., Ertuğrul Karatay, S., & Dönmez, G. (2019). YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. Gıda, 44(2), 291-300. https://doi.org/10.15237/gida.GD18091
AMA Bostancı C, Ertuğrul Karatay S, Dönmez G. YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. The Journal of Food. April 2019;44(2):291-300. doi:10.15237/gida.GD18091
Chicago Bostancı, Cihan, Sevgi Ertuğrul Karatay, and Gönül Dönmez. “YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ”. Gıda 44, no. 2 (April 2019): 291-300. https://doi.org/10.15237/gida.GD18091.
EndNote Bostancı C, Ertuğrul Karatay S, Dönmez G (April 1, 2019) YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. Gıda 44 2 291–300.
IEEE C. Bostancı, S. Ertuğrul Karatay, and G. Dönmez, “YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ”, The Journal of Food, vol. 44, no. 2, pp. 291–300, 2019, doi: 10.15237/gida.GD18091.
ISNAD Bostancı, Cihan et al. “YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ”. Gıda 44/2 (April 2019), 291-300. https://doi.org/10.15237/gida.GD18091.
JAMA Bostancı C, Ertuğrul Karatay S, Dönmez G. YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. The Journal of Food. 2019;44:291–300.
MLA Bostancı, Cihan et al. “YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ”. Gıda, vol. 44, no. 2, 2019, pp. 291-00, doi:10.15237/gida.GD18091.
Vancouver Bostancı C, Ertuğrul Karatay S, Dönmez G. YER FISTIĞI KABUĞUNDAN BİYOETANOL ÜRETİMİ. The Journal of Food. 2019;44(2):291-300.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/