BibTex RIS Cite

The Effect of Sprouting Process on Phytochemical Compounds (Turkish with English Abstract)

Year 2014, Volume: 39 Issue: 1, 49 - 56, 01.02.2014

Abstract

                                           Sprouted seeds and sprouts were consumed as functional foods and also they were used as functional ingredient in many different foods including breakfast items, salads, soups, pasta and baked products in the food industry. Sprouting process increase the nutritional components especially in phenolic compounds, vitamins, minerals and amino acids whereas, antinutritional factors such as phytic acid, oligosaccharides, trypsin inhibitors and gynogenic glycosides decrease. The lipids, carbohydrates and storage proteins are disintegrated into basical and more digestible nutrient units during sprouting process. Sprouting conditions as temperature, time and light and also cultivar variety had significant effects on phytochemical compounds in sprouted seeds and sprouts. In this study, it was investigated the content of phytochemical compounds in various seed sprouts (cereals, legumes, oil seeds, vegetables and others).

References

  • Martinez-Villaluenga C, Frias J, Gulewicz P, Gulewisz K, Vidal-Valverde C. 2008. Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol, (46) 1635-644.
  • Nonogaki H, Bassel WG, Bewley JD. 2010. Germination-still a msytery. Plant Sci., 179 (6), 574-581.
  • Anonymous 2012. International rules for seed testing. Seed Science and Technology, http://www.seedtest.org/en/publications-_content ---1--1013.html (Eriflim tarihi: 29.11.2012)
  • Efliyok D, Bozokalfa MK. 2002. Sebze olarak kullanılan çimlendirilmifl tohumlar. Dünya Gıda Dergisi, (6), 84-88.
  • Penas E, Gomez R, Frias J, Vidal-Valverde C. 2008. Application of high-pressure on alfalfa (Medigo sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control, (19), 698-705.
  • Mao JJ, Dong JF, Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, (85), 943-947.
  • Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3), 1074-1079.
  • Márton M, Mándoki Z, Csap -Kiss Zs, Csapo J. 2010. The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae, Alimentaria, (3), 81-117.
  • Kim SL, Kim SK, Park CH. 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Int, (37), 319-327.
  • Hsu CK, Chiang BH, Chen YS, Yang JH, Liu CL. 2008. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem., (108), 633-641.
  • Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H. 2008. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem., 110 (4), 814-820.
  • Kim SJ, Zaidul ISM, Maeda T, Suzuki T, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H. 2007. A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Sci Hortic, (115), 13-18.
  • Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, (119), 770-778.
  • Amici M, Bonli L, Spina M, Cecarini V, Calzuola I, Marsili V, Angeletti M, Fioretti E. Tacconi R, Gianfranceschi GL, Eleuteri AM. 2008. Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie, (90), 790-801.
  • Yang F, Basu TK, Ooraikul B. 2001. Studies on germination conditions and antioxidant content of wheatgrass. Int J Food Sci Nutr, (52), 319-330. 16. Kulkarni SD, Tilak JC, Acharya R, Nilima S, Rajurkar, Devasagayam TPA, Reddy AVR. 2006. Evaluation of the antioxidant activity of wheatg- rass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res, (20), 218-227.
  • Lachnicht D, Brevard PB, Wagner TL, DeMars CE. 2002. Dietary oxygen radical absorbance capacity as a predictor of bone mineral density. Nutr Res, (22), 1389-1399.
  • Tilak JC, Banerjee M, Mohan H, Devasagayam TPA. 2004. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother Res, (18), 798-804.
  • Randhir R, Kwon YI, Shetty K. 2008. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Sci Emerging Technol, (9), 355-364.
  • Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG. 2011. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aesti- vum). J Food Sci Technol, 48(6), 724-729.
  • Kapkum N, Phimphilai S, Srichairatanakool S, Varith J. 2011. Reduction in antioxidant properties lost during processing of a powdered beverage from young organic rice plants. As. J Food Ag-Ind, 4 (06), 388-398.
  • Lv Q, Yang Y, Zhao Y, Gu D, He D, Yili A, Ma Q, Cheng Z, Gao Y, Aisa HA, Ito Y. 2009. Comparative Study on Separation and Purification of Isoflavones from the Seeds and Sprouts of Chickpea by HSCCC. J Liq Chromatogr Relat Technol, 32(19), 2879-2892.
  • Bibi N, Aurang Z, Amal BK, Mohammad SK. 2008. Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am Food Technol, (3), 24-32.
  • Khalil AW, Zeb A, Mahmood F, Tariq S, Khattak AB, Shah H. 2007. Comparision of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT- Food Sci Technol, (40), 937-945.
  • Tarzi BG, Gharachorloo M, Baharinia M, Mortazavi SA. 2012. The Effect of Germination on Phenolic Content and Antioxidant Activity of Chickpea. Iran J Pharm Res, 11 (4), 1137-1143.
  • Randhir R, Lin YT, Shetty K. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem, (39), 637-646.
  • Kim DK, Jeong SC, Gorinstein S, Chon SU. 2012. Total Polyphenols, Antioxidant and Antiproliferative Activities of Different Extracts in Mungbean Seeds and Sprouts. Plant Foods Hum Nutr, (67), 71-75. 30. L pez-Amor s ML, Hernández T, Estrella I. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal, (19), 277-283.
  • Mbithi Mwikya S, Van Camp J, Rodriguez R, Huyghebaert A. 2001. Effects of sprouting on nutrient and antinutrient composition of kidney beans (Phaseolus vulgaris var. Rose coco). Eur Food Res Technol, (212), 188-191.
  • Urbano G, Aranda P, V lchez A, Aranda C, Cabrera L, Porres J M, L pez-Jurado M 2005. Effects of germination on the composition and nutritive value of proteins in Pisum sativum, Food Chem, (93), 671-679.
  • Alsokari SS. 2011. ZamzamWater-Induced Changes in Growth and Biochemical Parameters in Lentils. Aust J Basic Appl Sci, 5(9), 559-563.
  • Blöchl A, Peterbauer T, Richter A. 2007. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol, 39. Due as M, Hernández T, Estrella I, Fernández D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem, (117), 599-607.
  • Gulewicz P, Martı´nez-Villaluenga C, Frias J, Ciesiolka D, Gulewicz K, Vidal-Valverde C. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem, 107, 830-844.
  • Frias J, Gulewicz P, Mart nez-Villaluenga C, Pilarski R, Blazquez E, Jiménez B, Gulewicz K, Vidal-Valverde C. 2009. Influence of germination with different selenium solutions on nutritional value and cytotoxicity of lupin seeds. Agric Food Chem. 57 (4), 1319-1325.
  • Ramesh CK, Abdul Rehman Prabhakar BT, Vijay Avin BR, Aditya Rao SJ. 2011. Antioxidant potentials in sprouts vs. seeds of Vigna radiata and Macrotyloma uniflorum. Appl Pharm Sci, 01 (07), 99-103.
  • Plaz L, de Ancos B, Pilar Cano M. 2003. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur Food Res Technol, (216), 138-144.
  • Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung IM. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, (222), 201-208.
  • Lee SJ, Ahn JK, Kahnh TD, Chun SC, Kim SL, Ro HM, Song HK, Chung IM. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Agr Food Chem, (55), 9415-9421.
  • Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem, (111), 622-630.
  • Kumar V, Rani A, Pandey V, Chauhan GS. 2006. Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem, 99 (3), 563-568.
  • Dhakal KH, Jeong YS, Lee JD, Baek IY, Ha, TJ, Hwang YH. 2009. Fatty acid composition in each structural part of soybean seed and sprout. Crop Sci Biotechnol, 12 (2), 97-101.
  • Özkaynak E. 2011. Türkiye’de yetifltirilen bazı ya¤lık keten tohumlarının (linum usitatissimum l.) ve filizlerinin biyoaktif bileflikler açısından incelenmesi üzerine bir arafltırma. Doktora tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, 184 s.
  • Narina SS, Hamama AA, Bhardwaj HL. 2012. Nutritional and Mineral Composition of Flax Sprouts. J Agric Sci, 4 (11), 60-65.
  • Hahm TS, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, (100), 1643-1647.
  • Bellostas N, Kachlicki P, S rensen JC, S rensen H. 2007. Glucosinolate profiling of seeds and sprouts of B. Oleracea varieties used for food. Sci Hortic, (114), 234-242.
  • Pérez-Balibrea S, Moreno DA, Garc a-Viguera C. 2011. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem, (125), 348-354.
  • Moreno DA, Pérez-Balibrea S, Ferreres F, Gil-Izquierdo A, Garc a-Viguera C. 2010. Acylated anthocyanins in broccoli sprouts. Food Chem, (123), 358-363.
  • Pérez-Balibrea S, Moreno DA, Garc a-Viguera C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric, 88 (5), 904-910.
  • L pez-Cervantes J, Tirado-Noriega LG, Sánchez- Machado DI, Campas-Baypoli ON, Cant -Soto EU, N
  • of broccoli seeds and sprouts at different stages of seedling development. International Food Sci Technol, DOI: 10.1111/ijfs.12213.
  • Li D, Wub K, Forbes Howie A, Beckett GF, Wang W, Bao Y. 2008. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes. Food Chem, (110), 193-198.
  • Clarke J, Dashwood RH, Hoa E. 2008. Multi-targeted prevention of cancer by sulforaphane, Cancer Lett, (269), 291-304.
  • Zielinski H, Frias J, Piskula MK, Kozlowska H, Vidal-Valverde C. 2005. Vitamin B1 and B2, dietary fiber and minerals content of Cruciferae sprouts. Eur Food Res Technol, (221), 78-83.
  • Yuan G, Wang X, Guo R, Wang Q. 2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem., 121 (4), 1014-1019.
  • Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem., (115), 994-998.
  • Türk FH. 2009. Bazı Sofralık Üzüm Çeflitlerinde Farklı Dönemlerde Alınan Yapraklardaki Fenolik ve Mineral Madde De¤iflimlerinin Belirlenmesi. Doktora tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 113 s.

Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi

Year 2014, Volume: 39 Issue: 1, 49 - 56, 01.02.2014

Abstract

Filizlenmiş tohumlar ve filizler fonksiyonel gıda olarak tüketilmesinin yanı sıra gıda endüstrisinde kahvaltılık ürünler, salatalar, çorbalar, makarna ve unlu mamuller gibi çeşitli gıdalarda fonksiyonel bileşen olarak da kullanılmaktadır. Filizlenme işlemi ile özellikle fenolik bileşikler, vitaminler, mineraller ve aminoasitler gibi besin öğelerinin miktarı artarken; fitik asit, oligosakkaritler, tripsin inhibitörleri ve siyanojenik glikozitler gibi bazı bileşiklerin miktarı ise azalmaktadır. Filizlenme işlemi sırasında lipidler, karbonhidratlar ve depo proteinleri yıkılarak basit ve sindirimi daha kolay bileşikler meydana gelmektedir. Sıcaklık, süre ve ışık gibi filizlenme koşulları ile kültürel çeşitliliğin filizlenmiş tohumlarda ve filizlerde fitokimyasal bileşikler üzerine önemli düzeyde etkisi bulunmaktadır. Bu çalışmada, çeşitli tohum filizlerinin (tahıllar, baklagiller, yağlı tohumlar, sebzeler ve diğerleri) fitokimyasal bileşik içeriği incelenmiştir.

References

  • Martinez-Villaluenga C, Frias J, Gulewicz P, Gulewisz K, Vidal-Valverde C. 2008. Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol, (46) 1635-644.
  • Nonogaki H, Bassel WG, Bewley JD. 2010. Germination-still a msytery. Plant Sci., 179 (6), 574-581.
  • Anonymous 2012. International rules for seed testing. Seed Science and Technology, http://www.seedtest.org/en/publications-_content ---1--1013.html (Eriflim tarihi: 29.11.2012)
  • Efliyok D, Bozokalfa MK. 2002. Sebze olarak kullanılan çimlendirilmifl tohumlar. Dünya Gıda Dergisi, (6), 84-88.
  • Penas E, Gomez R, Frias J, Vidal-Valverde C. 2008. Application of high-pressure on alfalfa (Medigo sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control, (19), 698-705.
  • Mao JJ, Dong JF, Zhu MY. 2005. Effect of germination conditions on ascorbic acid level and yield of soybean sprout. J Sci Food Agric, (85), 943-947.
  • Khattak AB, Zeb A, Bibi N, Khalil SA, Khattak MA. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem, 104 (3), 1074-1079.
  • Márton M, Mándoki Z, Csap -Kiss Zs, Csapo J. 2010. The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae, Alimentaria, (3), 81-117.
  • Kim SL, Kim SK, Park CH. 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Int, (37), 319-327.
  • Hsu CK, Chiang BH, Chen YS, Yang JH, Liu CL. 2008. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem., (108), 633-641.
  • Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H. 2008. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem., 110 (4), 814-820.
  • Kim SJ, Zaidul ISM, Maeda T, Suzuki T, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H. 2007. A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Sci Hortic, (115), 13-18.
  • Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem, (119), 770-778.
  • Amici M, Bonli L, Spina M, Cecarini V, Calzuola I, Marsili V, Angeletti M, Fioretti E. Tacconi R, Gianfranceschi GL, Eleuteri AM. 2008. Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie, (90), 790-801.
  • Yang F, Basu TK, Ooraikul B. 2001. Studies on germination conditions and antioxidant content of wheatgrass. Int J Food Sci Nutr, (52), 319-330. 16. Kulkarni SD, Tilak JC, Acharya R, Nilima S, Rajurkar, Devasagayam TPA, Reddy AVR. 2006. Evaluation of the antioxidant activity of wheatg- rass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res, (20), 218-227.
  • Lachnicht D, Brevard PB, Wagner TL, DeMars CE. 2002. Dietary oxygen radical absorbance capacity as a predictor of bone mineral density. Nutr Res, (22), 1389-1399.
  • Tilak JC, Banerjee M, Mohan H, Devasagayam TPA. 2004. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother Res, (18), 798-804.
  • Randhir R, Kwon YI, Shetty K. 2008. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Sci Emerging Technol, (9), 355-364.
  • Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG. 2011. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aesti- vum). J Food Sci Technol, 48(6), 724-729.
  • Kapkum N, Phimphilai S, Srichairatanakool S, Varith J. 2011. Reduction in antioxidant properties lost during processing of a powdered beverage from young organic rice plants. As. J Food Ag-Ind, 4 (06), 388-398.
  • Lv Q, Yang Y, Zhao Y, Gu D, He D, Yili A, Ma Q, Cheng Z, Gao Y, Aisa HA, Ito Y. 2009. Comparative Study on Separation and Purification of Isoflavones from the Seeds and Sprouts of Chickpea by HSCCC. J Liq Chromatogr Relat Technol, 32(19), 2879-2892.
  • Bibi N, Aurang Z, Amal BK, Mohammad SK. 2008. Effect of germination time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). Am Food Technol, (3), 24-32.
  • Khalil AW, Zeb A, Mahmood F, Tariq S, Khattak AB, Shah H. 2007. Comparision of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT- Food Sci Technol, (40), 937-945.
  • Tarzi BG, Gharachorloo M, Baharinia M, Mortazavi SA. 2012. The Effect of Germination on Phenolic Content and Antioxidant Activity of Chickpea. Iran J Pharm Res, 11 (4), 1137-1143.
  • Randhir R, Lin YT, Shetty K. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem, (39), 637-646.
  • Kim DK, Jeong SC, Gorinstein S, Chon SU. 2012. Total Polyphenols, Antioxidant and Antiproliferative Activities of Different Extracts in Mungbean Seeds and Sprouts. Plant Foods Hum Nutr, (67), 71-75. 30. L pez-Amor s ML, Hernández T, Estrella I. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal, (19), 277-283.
  • Mbithi Mwikya S, Van Camp J, Rodriguez R, Huyghebaert A. 2001. Effects of sprouting on nutrient and antinutrient composition of kidney beans (Phaseolus vulgaris var. Rose coco). Eur Food Res Technol, (212), 188-191.
  • Urbano G, Aranda P, V lchez A, Aranda C, Cabrera L, Porres J M, L pez-Jurado M 2005. Effects of germination on the composition and nutritive value of proteins in Pisum sativum, Food Chem, (93), 671-679.
  • Alsokari SS. 2011. ZamzamWater-Induced Changes in Growth and Biochemical Parameters in Lentils. Aust J Basic Appl Sci, 5(9), 559-563.
  • Blöchl A, Peterbauer T, Richter A. 2007. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol, 39. Due as M, Hernández T, Estrella I, Fernández D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem, (117), 599-607.
  • Gulewicz P, Martı´nez-Villaluenga C, Frias J, Ciesiolka D, Gulewicz K, Vidal-Valverde C. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem, 107, 830-844.
  • Frias J, Gulewicz P, Mart nez-Villaluenga C, Pilarski R, Blazquez E, Jiménez B, Gulewicz K, Vidal-Valverde C. 2009. Influence of germination with different selenium solutions on nutritional value and cytotoxicity of lupin seeds. Agric Food Chem. 57 (4), 1319-1325.
  • Ramesh CK, Abdul Rehman Prabhakar BT, Vijay Avin BR, Aditya Rao SJ. 2011. Antioxidant potentials in sprouts vs. seeds of Vigna radiata and Macrotyloma uniflorum. Appl Pharm Sci, 01 (07), 99-103.
  • Plaz L, de Ancos B, Pilar Cano M. 2003. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur Food Res Technol, (216), 138-144.
  • Kim EH, Kim SH, Chung JI, Chi JH, Kim YA, Chung IM. 2004. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur Food Res Technol, (222), 201-208.
  • Lee SJ, Ahn JK, Kahnh TD, Chun SC, Kim SL, Ro HM, Song HK, Chung IM. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Agr Food Chem, (55), 9415-9421.
  • Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem, (111), 622-630.
  • Kumar V, Rani A, Pandey V, Chauhan GS. 2006. Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem, 99 (3), 563-568.
  • Dhakal KH, Jeong YS, Lee JD, Baek IY, Ha, TJ, Hwang YH. 2009. Fatty acid composition in each structural part of soybean seed and sprout. Crop Sci Biotechnol, 12 (2), 97-101.
  • Özkaynak E. 2011. Türkiye’de yetifltirilen bazı ya¤lık keten tohumlarının (linum usitatissimum l.) ve filizlerinin biyoaktif bileflikler açısından incelenmesi üzerine bir arafltırma. Doktora tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, 184 s.
  • Narina SS, Hamama AA, Bhardwaj HL. 2012. Nutritional and Mineral Composition of Flax Sprouts. J Agric Sci, 4 (11), 60-65.
  • Hahm TS, Park SJ, Lo YM. 2009. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour Technol, (100), 1643-1647.
  • Bellostas N, Kachlicki P, S rensen JC, S rensen H. 2007. Glucosinolate profiling of seeds and sprouts of B. Oleracea varieties used for food. Sci Hortic, (114), 234-242.
  • Pérez-Balibrea S, Moreno DA, Garc a-Viguera C. 2011. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem, (125), 348-354.
  • Moreno DA, Pérez-Balibrea S, Ferreres F, Gil-Izquierdo A, Garc a-Viguera C. 2010. Acylated anthocyanins in broccoli sprouts. Food Chem, (123), 358-363.
  • Pérez-Balibrea S, Moreno DA, Garc a-Viguera C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric, 88 (5), 904-910.
  • L pez-Cervantes J, Tirado-Noriega LG, Sánchez- Machado DI, Campas-Baypoli ON, Cant -Soto EU, N
  • of broccoli seeds and sprouts at different stages of seedling development. International Food Sci Technol, DOI: 10.1111/ijfs.12213.
  • Li D, Wub K, Forbes Howie A, Beckett GF, Wang W, Bao Y. 2008. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes. Food Chem, (110), 193-198.
  • Clarke J, Dashwood RH, Hoa E. 2008. Multi-targeted prevention of cancer by sulforaphane, Cancer Lett, (269), 291-304.
  • Zielinski H, Frias J, Piskula MK, Kozlowska H, Vidal-Valverde C. 2005. Vitamin B1 and B2, dietary fiber and minerals content of Cruciferae sprouts. Eur Food Res Technol, (221), 78-83.
  • Yuan G, Wang X, Guo R, Wang Q. 2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem., 121 (4), 1014-1019.
  • Pasko P, Barton H, Zagrodzki P, Gorinstein S, Folta M, Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem., (115), 994-998.
  • Türk FH. 2009. Bazı Sofralık Üzüm Çeflitlerinde Farklı Dönemlerde Alınan Yapraklardaki Fenolik ve Mineral Madde De¤iflimlerinin Belirlenmesi. Doktora tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 113 s.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Evrim Özkaynak Kanmaz This is me

Gülden Ova This is me

Publication Date February 1, 2014
Published in Issue Year 2014 Volume: 39 Issue: 1

Cite

APA Kanmaz, E. Ö. ., & Ova, G. . (2014). Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi. Gıda, 39(1), 49-56.
AMA Kanmaz EÖ, Ova G. Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi. The Journal of Food. February 2014;39(1):49-56.
Chicago Kanmaz, Evrim Özkaynak, and Gülden Ova. “Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi”. Gıda 39, no. 1 (February 2014): 49-56.
EndNote Kanmaz EÖ, Ova G (February 1, 2014) Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi. Gıda 39 1 49–56.
IEEE E. Ö. . Kanmaz and G. . Ova, “Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi”, The Journal of Food, vol. 39, no. 1, pp. 49–56, 2014.
ISNAD Kanmaz, Evrim Özkaynak - Ova, Gülden. “Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi”. Gıda 39/1 (February 2014), 49-56.
JAMA Kanmaz EÖ, Ova G. Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi. The Journal of Food. 2014;39:49–56.
MLA Kanmaz, Evrim Özkaynak and Gülden Ova. “Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi”. Gıda, vol. 39, no. 1, 2014, pp. 49-56.
Vancouver Kanmaz EÖ, Ova G. Filizlenme İşleminin Fitokimyasal Bileşikler Üzerine Etkisi. The Journal of Food. 2014;39(1):49-56.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/