Review
BibTex RIS Cite

APPLICATIONS OF COLD PLASMA TECHNOLOGY IN FRUIT, VEGETABLE, MEAT, CHICKEN AND AQUATIC PRODUCTS

Year 2024, Volume: 49 Issue: 4, 656 - 668, 14.08.2024
https://doi.org/10.15237/gida.GD23133

Abstract

Consumers demand preservative-free and not heat-treated foods instead of preservative containing and thermally processed foods. Alternative non-thermal food processing technologies have been developed to meet these demands of consumers, but the effectiveness of these technologies is limited due to the fact that foodborne microorganisms form resistant spores and produce toxins. Cold plasma, a new technology, stands out as a promising technology, especially in the inactivation of foodborne microorganisms and spores. Cold plasma technology also provides significant advantages over conventional food processing technologies for microbial inactivation as it is a versatile, efficient, economical, residue-free and environmentally friendly method. Cold plasma technology can reduce the microbial load of foods, preserve their quality and extend their shelf life. In this review, cold plasma technology, cold plasma production methods, mechanism of cold plasma and its effects on microorganisms in fruits, vegetables, meat, poultry and seafood were investigated.

References

  • Abdel-Naeem, H.H., Ebaid, E.M., Khalel, K.H., Imre, K., Morar, A., Herman, V., El-Nawawi, F.A.M. (2022). Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. LWT-Food Science and Technology, 165: 113739.
  • Akhtar, J., Abrha, M.G., Teklehaimanot, K., Gebrekirstos, G. (2022). Cold plasma technology: Fundamentals and effect on quality of meat and its products. Food and Agricultural Immunology, 33(1): 451-478.
  • Albertos, I., Martín-Diana, A., Cullen, P.J., Tiwari, B.K., Ojha, S.K., Bourke, P., Álvarez, C., Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies, 44: 117-122.
  • Albertos, I., Martin-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, K.S., Bourke, P., Rico, D. (2019). Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science and Emerging Technologies, 53: 85-91.
  • Asl, P.J., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Khaneghah, A.M., Marszałek, K. (2022). Non-thermal plasma technique for preservation of fresh foods: A review. Food Control, 134: 108560.
  • Bang, I.H., Lee, E.S., Lee, H.S., Min, S.C. (2020). Microbial decontamination system combining antimicrobial solution washing and atmospheric dielectric barrier discharge cold plasma treatment for preservation of mandarins. Postharvest Biology and Technology, 162: 111102.
  • Birania, S., Attkan, A.K., Kumar, S., Kumar, N., Singh, V.K. (2022). Cold plasma in food processing and preservation: A review. Journal of Food Process Engineering, 45(9): e14110.
  • Bogaerts, A., Neyts, E., Gijbels, R., van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4): 609-658.
  • Bora, J., Khan, T., Mahnot, N.K. (2022). Cold plasma treatment concerning quality and safety of food: A review. Current Research in Nutrition and Food Science Journal, 10(2): 427-446.
  • Carrillo-Lopez, L.M., Cruz-Garibaldi, B.Y., Huerta-Jimenez, M., Garcia-Galicia, I.A., Alarcon-Rojo, A.D. (2022). The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition. Molecules, 27(2): 541.
  • Chaplot, S., Yadav, B., Jeon, B., Roopesh, M.S. (2019). Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat. Journal of Food Protection, 82(5): 878-888.
  • Choi, S., Puligundla, P., Mok, C. (2017). Impact of corona discharge plasma treatment on microbial load and physicochemical and sensory characteristics of semi-dried squid (Todarodes pacificus). Food Science and Biotechnology, 26: 1137-1144.
  • Choi, M.S., Jeon, E.B., Kim, J.Y., Choi, E.H., Lim, J.S., Choi, J., Ha, K.S., Kwon, J.Y., Jeong, H.S, Park, S.Y. (2020). Virucidal effects of dielectric barrier discharge plasma on human norovirus infectivity in fresh oysters (Crassostrea gigas). Foods, 9: 1731.
  • Corradini, M.G. (2020). Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. In: Advances in Cold Plasma Applications for Food Safety and Preservation, Bermudez-Aguirre, D. (ed.), Academic Press, UK, pp. 93-108.
  • de Souza Silva, D.A., da Silva Campelo, M.C., de Oliveira Soares Rebouças, L., de Oliveira Vitoriano, J., Alves Junior, C., da Silva, J.B.A., de Oliveira Lima, P. (2019). Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei). Journal of Food Protection, 82(7): 1217-1223.
  • Dong, X.Y., Yang, Y.L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8): 1409-1421.
  • Ekezie, F.G.C., Sun, D.W., Cheng, J.H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69: 46-58.
  • Farber, R., Dabush-Busheri, I., Chaniel, G., Rozenfeld, S., Bormashenko, E., Multanen, V., Cahan, R. (2019). Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation. International Biodeterioration and Biodegradation, 139: 62-69.
  • Farooq, S., Dar, A.H., Dash, K.K., Srivastava, S., Pandey, V.K., Ayoub, W.S., Pandiselvam, R., Manzoor, S., Kaur, M. (2023). Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Science and Biotechnology, 32(5), 621-638.
  • Feizollahi, E., Misra, N.N., Roopesh, M.S. (2021). Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition, 61(4): 666-689.
  • Filipić, A., Gutierrez-Aguirre, I., Primc, G., Mozetič, M., Dobnik, D. (2020). Cold plasma, a new hope in the field of virus inactivation. Trends in Biotechnology, 38(11): 1278-1291.
  • Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., Fridman, A. (2008). Applied plasma medicine. Plasma Processes and Polymers, 5(6): 503-533.
  • Ganesan, A.R., Tiwari, U., Ezhilarasi, P.N., Rajauria, G. (2021). Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation, 45(1): e15070.
  • Gao, J., Chen, L., Zeng, X., Sun, X., Bai, Y., Wang, X., Xu, X., Han, M. (2023). Novel drying pretreatment technologies and their applications in the food industry. Food Materials Research, 3: 14.
  • Gavahian, M., Cullen, P.J. (2020). Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends. Food Reviews International, 36(2): 193-214.
  • Gavahian, M., Khaneghah, A.M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9): 1581-1592.
  • Giannoglou, M., Dimitrakellis, P., Efthimiadou, Α., Gogolides, Ε., Katsaros, G. (2021). Comparative study on the effect of cold atmospheric plasma, ozonation, pulsed electromagnetic fields and high-pressure technologies on sea bream fillet quality indices and shelf life. Food Engineering Reviews, 13(1): 175-184.
  • Guo, L., Xu, R., Gou, L., Liu, Z., Zhao, Y., Liu, D., Zhang, L., Chen, H., Kong, M.G. (2018). Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Applied and Environmental Microbiology, 84(17): e00726-18.
  • Hage, M., Khelissa, S., Akoum, H., Chihib, N.E., Jama, C. (2022). Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Applied Microbiology and Biotechnology, 106: 81-100.
  • Han, J.Y., Song, W.J., Kang, J.H., Min, S.C., Eom, S., Hong, E.J., Ryu, S., Kim, S.B., Cho, S., Kang, D.H. (2020). Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake. LWT-Food Science and Technology, 120: 108918.
  • Hosseini, S.M., Rostami, S., Hosseinzadeh Samani, B., Lorigooini, Z. (2020). The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Science and Nutrition, 8(2): 870-883.
  • Jayasena, D.D., Kang, T., Wijayasekara, K.N., Jo, C. (2023). Innovative application of cold plasma technology in meat and its products. Food Science of Animal Resources, 43(6): 1087-1110.
  • Kang, T., Yim, D., Kim, S.S., Baek, K.H., Kim, H.J., Jo, C. (2022). Effect of plasma-activated acetic acid on inactivation of Salmonella Typhimurium and quality traits on chicken meats. Poultry Science, 101(5): 101793.
  • Kulawik, P., Alvarez, C., Cullen, P.J., Aznar-Roca, R., Mullen, A.M., Tiwari, B. (2018). The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science and Emerging Technologies, 45: 412-417.
  • Laroque, D.A., Seó, S.T., Valencia, G.A., Laurindo, J.B., Carciofi, B.A.M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312: 110748.
  • Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X., Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT-Food Science and Technology, 115: 108447.
  • Liu, C., Chen, C., Jiang, A., Sun, X., Guan, Q., Hu, W. (2020). Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innovative Food Science and Emerging Technologies, 59: 102256.
  • Luo, J., Nasiru, M.M., Yan, W., Zhuang, H., Zhou, G., Zhang, J. (2020). Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT-Food Science and Technology, 117: 108606.
  • Luo, J., Xu, W., Liu, Q., Zou, Y., Wang, D., Zhang, J. (2022). Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. LWT-Food Science and Technology, 162: 113484.
  • Mahnot, N., Siyu, L.P., Wan, Z., Keener, K.M., Misra, N.N. (2020). In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. Journal of Physics D: Applied Physics, 53(15): 154002.
  • Mehta, D., Yadav, S.K. (2022). Recent advances in cold plasma technology for food processing. Food Engineering Reviews, 14(4): 555-578.
  • Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A., Khorshidian, N. (2021). Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology, 247: 1579-1594.
  • Monjazeb Marvdashti, L., Arabameri, M., Yousefi, B., Eslami, M., Emadi, A., Ebrahimi, A., Abdolshahi, A., Abdel-Wahhab, M.A., (2023). Cold plasma technology impact on microorganisms inactivation in foods: A systematic review. Journal of Chemical Health Risks, 13(4): 623-634.
  • Moutiq, R., Misra, N.N., Mendonça, A., Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159: 107942.
  • Nasiru, M.M., Frimpong, E.B., Muhammad, U., Qian, J., Mustapha, A.T., Yan, W., Zhuang, H., Zhang, J. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3): 2626-2659.
  • Nwabor, O.F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., Hart, A. (2022). A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Engineering Reviews, 14(4): 535-554.
  • Olatunde, O.O., Benjakul, S., Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324: 108612.
  • Patange, A., Boehm, D., Bueno-Ferrer, C., Cullen, P.J., Bourke, P. (2017). Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 66: 48-54.
  • Patange, A., Lu, P., Boehm, D., Cullen, P.J., Bourke, P. (2019). Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiology, 84: 103226.
  • Paulsen, P., Csadek, I., Bauer, A., Bak, K.H., Weidinger, P., Schwaiger, K., Nowotny, N., Walsh, J., Martines, E., Smulders, F.J.M. (2022). Treatment of fresh meat, fish and products thereof with cold atmospheric plasma to inactivate microbial pathogens and extend shelf life. Foods, 11(23): 3865.
  • Priyadarshini, A., Rajauria, G., O'Donnell, C.P., Tiwari, B.K. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19): 3082-3101.
  • Qian, J., Zhuang, H., Nasiru, M.M., Muhammad, U., Zhang, J., Yan, W. (2019). Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innovative Food Science and Emerging Technologies, 57: 102196.
  • Rana, S., Mehta, D., Bansal, V., Shivhare, U.S., Yadav, S.K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1): 102-112.
  • Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M.S., Pan, D., Du, L. (2023). The application of cold plasma technology in low-moisture foods. Food Engineering Reviews, 15(1): 86-112.
  • Raviteja, T., Dayam, S.K., Yashwanth, J. (2019). A study on cold plasma for food preservation. Journal of Scientific Research and Reports, 23(4): 1-14.
  • Roshanak, S., Maleki, M., Sani, M.A., Tavassoli, M., Pirkhezranian, Z., Shahidi, F. (2023). The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. International Journal of Food Microbiology, 388: 110066.
  • Roy, P.K., Jeon, E.B., Park, S.Y. (2022). Effects of nonthermal dielectric barrier discharge plasma against Listeria monocytogenes and quality of smoked salmon fillets. Journal of Food Safety, 42(6): e13012.
  • Sahebkar, A., Hosseini, M., Sharifan, A. (2020). Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. LWT-Food Science and Technology, 131: 109759.
  • Sarangapani, C., O'Toole, G., Cullen, P.J., Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44: 235-241.
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., Julak, J. (2015). Nonthermal plasma–A tool for decontamination and disinfection. Biotechnology Advances, 33(6): 1108-1119.
  • Scholtz, V., Vaňková, E., Kašparová, P., Premanath, R., Karunasagar, I., Julák, J. (2021). Non-thermal plasma treatment of ESKAPE pathogens: a review. Frontiers in Microbiology, 12: 737635.
  • Sheng L., Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20(1): 738-786.
  • Shi, H., Ileleji, K., Stroshine, R.L., Keener, K., Jensen, J.L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10(6): 1042-1052.
  • Speranza, B., Racioppo, A., Bevilacqua, A., Buzzo, V., Marigliano, P., Mocerino, E., Scognamiglio, R., Corbo, M.R., Scognamiglio, G., Sinigaglia, M. (2021). Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods, 10(11): 2854.
  • Sruthi, N.U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., Khaneghah, A.M. (2022). Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry, 368: 130809.
  • Stoffels, E., Sakiyama, Y., Graves, D.B. (2008). Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36(4): 1441-1457.
  • Stratakos, A.C., Grant, I.R. (2018). Evaluation of the efficacy of multiple physical, biological and natural antimicrobial interventions for control of pathogenic Escherichia coli on beef. Food Microbiology, 76: 209-218.
  • Zhu, Y., Li, C., Cui, H., Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science and Technology, 99: 142-151.
  • Ziuzina, D., Misra, N.N., Han, L., Cullen, P.J., Moiseev, T., Mosnier, J.P., Keener, K., Gaston, E., Vilaró, I., Bourke, P. (2020). Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science and Emerging Technologies, 59: 102229.

SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI

Year 2024, Volume: 49 Issue: 4, 656 - 668, 14.08.2024
https://doi.org/10.15237/gida.GD23133

Abstract

Tüketiciler kimyasal maddeler içeren ve ısıl olarak işlenmiş gıdaların yerine koruyucu içermeyen ve ısıl işlem uygulanmamış gıdaları talep etmektedir. Tüketicilerin bu isteklerini karşılamak için ısıl olmayan alternatif gıda işleme teknolojileri geliştirilmiş ancak, bu teknolojilerin etkinliği gıda kaynaklı mikroorganizmaların dirençli sporlar oluşturması ve toksin üretmesi nedeniyle sınırlı kalmaktadır. Yeni bir teknoloji olan soğuk plazma, özellikle gıda kaynaklı mikroorganizmaların ve sporların inaktivasyonunda ümit vadeden bir teknoloji olarak öne çıkmaktadır. Soğuk plazma teknolojisi, çok yönlü, etkin, ekonomik, kalıntı bırakmayan ve çevre dostu bir yöntem olması nedeniyle mikrobiyal inaktivasyon için konvansiyonel gıda işleme teknolojilerine göre önemli avantajlar da sağlamaktadır. Soğuk plazma teknolojisi ile gıdaların mikrobiyal yükü azaltılabilmekte, kaliteleri korunabilmekte ve raf ömürleri uzatılabilmektedir. Bu derleme çalışmasında soğuk plazma teknolojisi, soğuk plazma üretim yöntemleri, soğuk plazmanın mekanizması ile meyve, sebze, et, tavuk ve su ürünlerindeki mikroorganizmalar üzerindeki etkileri incelenmiştir.

References

  • Abdel-Naeem, H.H., Ebaid, E.M., Khalel, K.H., Imre, K., Morar, A., Herman, V., El-Nawawi, F.A.M. (2022). Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. LWT-Food Science and Technology, 165: 113739.
  • Akhtar, J., Abrha, M.G., Teklehaimanot, K., Gebrekirstos, G. (2022). Cold plasma technology: Fundamentals and effect on quality of meat and its products. Food and Agricultural Immunology, 33(1): 451-478.
  • Albertos, I., Martín-Diana, A., Cullen, P.J., Tiwari, B.K., Ojha, S.K., Bourke, P., Álvarez, C., Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies, 44: 117-122.
  • Albertos, I., Martin-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, K.S., Bourke, P., Rico, D. (2019). Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science and Emerging Technologies, 53: 85-91.
  • Asl, P.J., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Khaneghah, A.M., Marszałek, K. (2022). Non-thermal plasma technique for preservation of fresh foods: A review. Food Control, 134: 108560.
  • Bang, I.H., Lee, E.S., Lee, H.S., Min, S.C. (2020). Microbial decontamination system combining antimicrobial solution washing and atmospheric dielectric barrier discharge cold plasma treatment for preservation of mandarins. Postharvest Biology and Technology, 162: 111102.
  • Birania, S., Attkan, A.K., Kumar, S., Kumar, N., Singh, V.K. (2022). Cold plasma in food processing and preservation: A review. Journal of Food Process Engineering, 45(9): e14110.
  • Bogaerts, A., Neyts, E., Gijbels, R., van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4): 609-658.
  • Bora, J., Khan, T., Mahnot, N.K. (2022). Cold plasma treatment concerning quality and safety of food: A review. Current Research in Nutrition and Food Science Journal, 10(2): 427-446.
  • Carrillo-Lopez, L.M., Cruz-Garibaldi, B.Y., Huerta-Jimenez, M., Garcia-Galicia, I.A., Alarcon-Rojo, A.D. (2022). The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition. Molecules, 27(2): 541.
  • Chaplot, S., Yadav, B., Jeon, B., Roopesh, M.S. (2019). Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat. Journal of Food Protection, 82(5): 878-888.
  • Choi, S., Puligundla, P., Mok, C. (2017). Impact of corona discharge plasma treatment on microbial load and physicochemical and sensory characteristics of semi-dried squid (Todarodes pacificus). Food Science and Biotechnology, 26: 1137-1144.
  • Choi, M.S., Jeon, E.B., Kim, J.Y., Choi, E.H., Lim, J.S., Choi, J., Ha, K.S., Kwon, J.Y., Jeong, H.S, Park, S.Y. (2020). Virucidal effects of dielectric barrier discharge plasma on human norovirus infectivity in fresh oysters (Crassostrea gigas). Foods, 9: 1731.
  • Corradini, M.G. (2020). Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. In: Advances in Cold Plasma Applications for Food Safety and Preservation, Bermudez-Aguirre, D. (ed.), Academic Press, UK, pp. 93-108.
  • de Souza Silva, D.A., da Silva Campelo, M.C., de Oliveira Soares Rebouças, L., de Oliveira Vitoriano, J., Alves Junior, C., da Silva, J.B.A., de Oliveira Lima, P. (2019). Use of cold atmospheric plasma to preserve the quality of white shrimp (Litopenaeus vannamei). Journal of Food Protection, 82(7): 1217-1223.
  • Dong, X.Y., Yang, Y.L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8): 1409-1421.
  • Ekezie, F.G.C., Sun, D.W., Cheng, J.H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69: 46-58.
  • Farber, R., Dabush-Busheri, I., Chaniel, G., Rozenfeld, S., Bormashenko, E., Multanen, V., Cahan, R. (2019). Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation. International Biodeterioration and Biodegradation, 139: 62-69.
  • Farooq, S., Dar, A.H., Dash, K.K., Srivastava, S., Pandey, V.K., Ayoub, W.S., Pandiselvam, R., Manzoor, S., Kaur, M. (2023). Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Science and Biotechnology, 32(5), 621-638.
  • Feizollahi, E., Misra, N.N., Roopesh, M.S. (2021). Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition, 61(4): 666-689.
  • Filipić, A., Gutierrez-Aguirre, I., Primc, G., Mozetič, M., Dobnik, D. (2020). Cold plasma, a new hope in the field of virus inactivation. Trends in Biotechnology, 38(11): 1278-1291.
  • Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., Fridman, A. (2008). Applied plasma medicine. Plasma Processes and Polymers, 5(6): 503-533.
  • Ganesan, A.R., Tiwari, U., Ezhilarasi, P.N., Rajauria, G. (2021). Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation, 45(1): e15070.
  • Gao, J., Chen, L., Zeng, X., Sun, X., Bai, Y., Wang, X., Xu, X., Han, M. (2023). Novel drying pretreatment technologies and their applications in the food industry. Food Materials Research, 3: 14.
  • Gavahian, M., Cullen, P.J. (2020). Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends. Food Reviews International, 36(2): 193-214.
  • Gavahian, M., Khaneghah, A.M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9): 1581-1592.
  • Giannoglou, M., Dimitrakellis, P., Efthimiadou, Α., Gogolides, Ε., Katsaros, G. (2021). Comparative study on the effect of cold atmospheric plasma, ozonation, pulsed electromagnetic fields and high-pressure technologies on sea bream fillet quality indices and shelf life. Food Engineering Reviews, 13(1): 175-184.
  • Guo, L., Xu, R., Gou, L., Liu, Z., Zhao, Y., Liu, D., Zhang, L., Chen, H., Kong, M.G. (2018). Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Applied and Environmental Microbiology, 84(17): e00726-18.
  • Hage, M., Khelissa, S., Akoum, H., Chihib, N.E., Jama, C. (2022). Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Applied Microbiology and Biotechnology, 106: 81-100.
  • Han, J.Y., Song, W.J., Kang, J.H., Min, S.C., Eom, S., Hong, E.J., Ryu, S., Kim, S.B., Cho, S., Kang, D.H. (2020). Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake. LWT-Food Science and Technology, 120: 108918.
  • Hosseini, S.M., Rostami, S., Hosseinzadeh Samani, B., Lorigooini, Z. (2020). The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Science and Nutrition, 8(2): 870-883.
  • Jayasena, D.D., Kang, T., Wijayasekara, K.N., Jo, C. (2023). Innovative application of cold plasma technology in meat and its products. Food Science of Animal Resources, 43(6): 1087-1110.
  • Kang, T., Yim, D., Kim, S.S., Baek, K.H., Kim, H.J., Jo, C. (2022). Effect of plasma-activated acetic acid on inactivation of Salmonella Typhimurium and quality traits on chicken meats. Poultry Science, 101(5): 101793.
  • Kulawik, P., Alvarez, C., Cullen, P.J., Aznar-Roca, R., Mullen, A.M., Tiwari, B. (2018). The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innovative Food Science and Emerging Technologies, 45: 412-417.
  • Laroque, D.A., Seó, S.T., Valencia, G.A., Laurindo, J.B., Carciofi, B.A.M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312: 110748.
  • Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X., Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT-Food Science and Technology, 115: 108447.
  • Liu, C., Chen, C., Jiang, A., Sun, X., Guan, Q., Hu, W. (2020). Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innovative Food Science and Emerging Technologies, 59: 102256.
  • Luo, J., Nasiru, M.M., Yan, W., Zhuang, H., Zhou, G., Zhang, J. (2020). Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT-Food Science and Technology, 117: 108606.
  • Luo, J., Xu, W., Liu, Q., Zou, Y., Wang, D., Zhang, J. (2022). Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. LWT-Food Science and Technology, 162: 113484.
  • Mahnot, N., Siyu, L.P., Wan, Z., Keener, K.M., Misra, N.N. (2020). In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. Journal of Physics D: Applied Physics, 53(15): 154002.
  • Mehta, D., Yadav, S.K. (2022). Recent advances in cold plasma technology for food processing. Food Engineering Reviews, 14(4): 555-578.
  • Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A., Khorshidian, N. (2021). Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology, 247: 1579-1594.
  • Monjazeb Marvdashti, L., Arabameri, M., Yousefi, B., Eslami, M., Emadi, A., Ebrahimi, A., Abdolshahi, A., Abdel-Wahhab, M.A., (2023). Cold plasma technology impact on microorganisms inactivation in foods: A systematic review. Journal of Chemical Health Risks, 13(4): 623-634.
  • Moutiq, R., Misra, N.N., Mendonça, A., Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159: 107942.
  • Nasiru, M.M., Frimpong, E.B., Muhammad, U., Qian, J., Mustapha, A.T., Yan, W., Zhuang, H., Zhang, J. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3): 2626-2659.
  • Nwabor, O.F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., Hart, A. (2022). A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Engineering Reviews, 14(4): 535-554.
  • Olatunde, O.O., Benjakul, S., Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324: 108612.
  • Patange, A., Boehm, D., Bueno-Ferrer, C., Cullen, P.J., Bourke, P. (2017). Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 66: 48-54.
  • Patange, A., Lu, P., Boehm, D., Cullen, P.J., Bourke, P. (2019). Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiology, 84: 103226.
  • Paulsen, P., Csadek, I., Bauer, A., Bak, K.H., Weidinger, P., Schwaiger, K., Nowotny, N., Walsh, J., Martines, E., Smulders, F.J.M. (2022). Treatment of fresh meat, fish and products thereof with cold atmospheric plasma to inactivate microbial pathogens and extend shelf life. Foods, 11(23): 3865.
  • Priyadarshini, A., Rajauria, G., O'Donnell, C.P., Tiwari, B.K. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19): 3082-3101.
  • Qian, J., Zhuang, H., Nasiru, M.M., Muhammad, U., Zhang, J., Yan, W. (2019). Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innovative Food Science and Emerging Technologies, 57: 102196.
  • Rana, S., Mehta, D., Bansal, V., Shivhare, U.S., Yadav, S.K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57(1): 102-112.
  • Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M.S., Pan, D., Du, L. (2023). The application of cold plasma technology in low-moisture foods. Food Engineering Reviews, 15(1): 86-112.
  • Raviteja, T., Dayam, S.K., Yashwanth, J. (2019). A study on cold plasma for food preservation. Journal of Scientific Research and Reports, 23(4): 1-14.
  • Roshanak, S., Maleki, M., Sani, M.A., Tavassoli, M., Pirkhezranian, Z., Shahidi, F. (2023). The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties. International Journal of Food Microbiology, 388: 110066.
  • Roy, P.K., Jeon, E.B., Park, S.Y. (2022). Effects of nonthermal dielectric barrier discharge plasma against Listeria monocytogenes and quality of smoked salmon fillets. Journal of Food Safety, 42(6): e13012.
  • Sahebkar, A., Hosseini, M., Sharifan, A. (2020). Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. LWT-Food Science and Technology, 131: 109759.
  • Sarangapani, C., O'Toole, G., Cullen, P.J., Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44: 235-241.
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., Julak, J. (2015). Nonthermal plasma–A tool for decontamination and disinfection. Biotechnology Advances, 33(6): 1108-1119.
  • Scholtz, V., Vaňková, E., Kašparová, P., Premanath, R., Karunasagar, I., Julák, J. (2021). Non-thermal plasma treatment of ESKAPE pathogens: a review. Frontiers in Microbiology, 12: 737635.
  • Sheng L., Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20(1): 738-786.
  • Shi, H., Ileleji, K., Stroshine, R.L., Keener, K., Jensen, J.L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10(6): 1042-1052.
  • Speranza, B., Racioppo, A., Bevilacqua, A., Buzzo, V., Marigliano, P., Mocerino, E., Scognamiglio, R., Corbo, M.R., Scognamiglio, G., Sinigaglia, M. (2021). Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods, 10(11): 2854.
  • Sruthi, N.U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., Khaneghah, A.M. (2022). Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry, 368: 130809.
  • Stoffels, E., Sakiyama, Y., Graves, D.B. (2008). Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36(4): 1441-1457.
  • Stratakos, A.C., Grant, I.R. (2018). Evaluation of the efficacy of multiple physical, biological and natural antimicrobial interventions for control of pathogenic Escherichia coli on beef. Food Microbiology, 76: 209-218.
  • Zhu, Y., Li, C., Cui, H., Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science and Technology, 99: 142-151.
  • Ziuzina, D., Misra, N.N., Han, L., Cullen, P.J., Moiseev, T., Mosnier, J.P., Keener, K., Gaston, E., Vilaró, I., Bourke, P. (2020). Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science and Emerging Technologies, 59: 102229.
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering, Food Packaging, Preservation and Processing
Journal Section Articles
Authors

Murat Özdemir 0000-0001-9025-3068

Alpaslan Kerem Şengül 0009-0006-6019-1963

Bartu Bulamacı 0009-0003-4805-9650

Berke Taşdemir This is me 0009-0001-4538-0292

Publication Date August 14, 2024
Submission Date November 24, 2023
Acceptance Date July 16, 2024
Published in Issue Year 2024 Volume: 49 Issue: 4

Cite

APA Özdemir, M., Şengül, A. K., Bulamacı, B., Taşdemir, B. (2024). SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI. Gıda, 49(4), 656-668. https://doi.org/10.15237/gida.GD23133
AMA Özdemir M, Şengül AK, Bulamacı B, Taşdemir B. SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI. The Journal of Food. August 2024;49(4):656-668. doi:10.15237/gida.GD23133
Chicago Özdemir, Murat, Alpaslan Kerem Şengül, Bartu Bulamacı, and Berke Taşdemir. “SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI”. Gıda 49, no. 4 (August 2024): 656-68. https://doi.org/10.15237/gida.GD23133.
EndNote Özdemir M, Şengül AK, Bulamacı B, Taşdemir B (August 1, 2024) SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI. Gıda 49 4 656–668.
IEEE M. Özdemir, A. K. Şengül, B. Bulamacı, and B. Taşdemir, “SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI”, The Journal of Food, vol. 49, no. 4, pp. 656–668, 2024, doi: 10.15237/gida.GD23133.
ISNAD Özdemir, Murat et al. “SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI”. Gıda 49/4 (August 2024), 656-668. https://doi.org/10.15237/gida.GD23133.
JAMA Özdemir M, Şengül AK, Bulamacı B, Taşdemir B. SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI. The Journal of Food. 2024;49:656–668.
MLA Özdemir, Murat et al. “SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI”. Gıda, vol. 49, no. 4, 2024, pp. 656-68, doi:10.15237/gida.GD23133.
Vancouver Özdemir M, Şengül AK, Bulamacı B, Taşdemir B. SOĞUK PLAZMA TEKNOLOJİSİNİN MEYVE, SEBZE, ET, TAVUK VE SU ÜRÜNLERİNDEKİ UYGULAMALARI. The Journal of Food. 2024;49(4):656-68.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/