Retraction

Retraction: 2D BACKWARD FACING STEP FLOW SIMULATION BY FINITE DIFFERENCE METHOD

Year 2023, Issue: 23, 66 - 79, 31.07.2023
This is a retraction to: 2D BACKWARD FACING STEP FLOW SIMULATION BY FINITE DIFFERENCE METHOD https://dergipark.org.tr/en/pub/gidb/issue/73057/1091238

Retraction Note

Yazarın talebi üzerine makale geri çekilmiştir.

Abstract

In the current study, a backward-facing step flow (BFS) by finite difference discretization is solved in 2D Cartesian coordinate system. The governing equations of the problem are the incompressible Navier-Stokes equations and the continuity equation. The no-slip boundary conditions are applied using ghost cells within the solid domain. The Dirichlet and Neumann boundary conditions are implemented at the inlet and outlet of the channel, respectively. MAC (Marker and Cell) method is utilized as a numerical scheme to solve the flow. The problem is considered as a Stokes flow (Re=0). Results show good agreement with the data that is calculated by the commercial software. The code written in Matlab is provided in the Appendix.

References

  • [1] Armaly, B. F., Durst, F., Pereira, J. C. F., & Schönung, B. (1983). Experimental and theoretical investigation of backward-facing step flow. Journal of fluid Mechanics, 127, 473-496.
  • [2] Tihon, J., Pěnkavová, V., Havlica, J., & Šimčík, M. (2012). The transitional backward-facing step flow in a water channel with variable expansion geometry. Experimental Thermal and Fluid Science, 40, 112-125.
  • [3] Biswas, G., Breuer, M., & Durst, F. (2004). Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng., 126(3), 362-374.
  • [4] Chen, L., Asai, K., Nonomura, T., Xi, G., & Liu, T. (2018). A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control. Thermal Science and Engineering Progress, 6, 194-216.
  • [5] Pont-Vílchez, A., Trias, F. X., Gorobets, A., & Oliva, A. (2019). Direct numerical simulation of backward-facing step flow at Re=395 and expansion ratio 2. Journal of Fluid Mechanics, 863, 341-363.
  • [6] Erturk, E. (2008). Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions. Computers & Fluids, 37(6), 633-655.
  • [7] Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. The physics of fluids, 8(12), 2182-2189.
  • [8] McKee, S., Tomé, M. F., Ferreira, V. G., Cuminato, J. A., Castelo, A., Sousa, F. S., & Mangiavacchi, N. (2008). The MAC method. Computers & Fluids, 37(8), 907-930.

Retraction: 2D BACKWARD FACING STEP FLOW SIMULATION BY FINITE DIFFERENCE METHOD

Year 2023, Issue: 23, 66 - 79, 31.07.2023
This is a retraction to: 2D BACKWARD FACING STEP FLOW SIMULATION BY FINITE DIFFERENCE METHOD https://dergipark.org.tr/en/pub/gidb/issue/73057/1091238

Retraction Note

Abstract

In the current study, a backward-facing step flow (BFS) by finite difference discretization is solved in 2D Cartesian coordinate system. The governing equations of the problem are the incompressible Navier-Stokes equations and the continuity equation. The no-slip boundary conditions are applied using ghost cells within the solid domain. The Dirichlet and Neumann boundary conditions are implemented at the inlet and outlet of the channel, respectively. MAC (Marker and Cell) method is utilized as a numerical scheme to solve the flow. The problem is considered as a Stokes flow (Re=0). Results show good agreement with the data that is calculated by the commercial software. The code written in Matlab is provided in the Appendix.

References

  • [1] Armaly, B. F., Durst, F., Pereira, J. C. F., & Schönung, B. (1983). Experimental and theoretical investigation of backward-facing step flow. Journal of fluid Mechanics, 127, 473-496.
  • [2] Tihon, J., Pěnkavová, V., Havlica, J., & Šimčík, M. (2012). The transitional backward-facing step flow in a water channel with variable expansion geometry. Experimental Thermal and Fluid Science, 40, 112-125.
  • [3] Biswas, G., Breuer, M., & Durst, F. (2004). Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng., 126(3), 362-374.
  • [4] Chen, L., Asai, K., Nonomura, T., Xi, G., & Liu, T. (2018). A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control. Thermal Science and Engineering Progress, 6, 194-216.
  • [5] Pont-Vílchez, A., Trias, F. X., Gorobets, A., & Oliva, A. (2019). Direct numerical simulation of backward-facing step flow at Re=395 and expansion ratio 2. Journal of Fluid Mechanics, 863, 341-363.
  • [6] Erturk, E. (2008). Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions. Computers & Fluids, 37(6), 633-655.
  • [7] Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. The physics of fluids, 8(12), 2182-2189.
  • [8] McKee, S., Tomé, M. F., Ferreira, V. G., Cuminato, J. A., Castelo, A., Sousa, F. S., & Mangiavacchi, N. (2008). The MAC method. Computers & Fluids, 37(8), 907-930.
There are 8 citations in total.

Details

Primary Language English
Subjects Maritime Engineering
Journal Section Research Articles
Authors

Cihad Çelik 0000-0002-2335-0455

Bülent Danışman 0000-0001-6320-5351

Barış Barlas 0000-0002-5846-2369

Publication Date July 31, 2023
Published in Issue Year 2023 Issue: 23

88x31.png

Bu site ve içerisinde yayınlanan eserler Creative Commons AI 4.0 Uluslararası Lisansı ile lisanslanmıştır.
GiDB|DERGi, İstanbul Teknik Üniversitesi tarafından yayınlanmaktadır.