Optimization of machine elements is both an important issue and an intensive study topic in engineering. Design of compression springs according to minimum weight or volume is a sample problem in this area. Various optimization methods such as particle swarm optimization, genetic algorithm are applied to the problem. Grey Wolf optimization (GWO) method, one of the least nature-inspired algorithms, mimics the hunting and leadership hierarchy of grey wolves. The method has attracted attention for a short time due to its successful performance in engineering applications. In this study, GWO was applied to the design of compression springs with minimum volume. The performance of the GWO was compared with the optimization methods used for solving the same problem in previous studies. The results of the study show that the GWO provides very successful results for the design of compression springs with minimum volume.
Makine elemanlarının optimizasyonu mühendislikte hem önemli bir problem hemde yoğun bir çalışma alanıdır. Basınç yaylarının minimum hacme veya ağırlığa göre tasarımı bu alandaki örnek problemlerden birisidir. Parçacık sürü optimizasyonu, genetik algoritma gibi çeşitli optimizasyon yöntemleri bu probleme uygulanmıştır. Doğadan esinlenen algoritmaların sonuncularından Bozkurt Optimizasyonu (BO) yöntemi, bozkurtların avlanmaları ve liderlik hiyerarşisinden esinlenmiştir. Bu yöntem, mühendislik uygulamalarındaki başarılı performansıyla kısa sürede dikkatleri çekmiştir. Bu çalışmada BO, basınç yaylarının asgari hacme göre tasarımına uygulanmıştır. BO’nun performansı önceki çalışmalarda aynı problemin çözümü için kullanılan optimizasyon yöntemleriyle karşılaştırılmıştır. Çalışmanın sonuçları BO’nun basınç yaylarının asgari hacme göre tasarımında başarılı sonuçlar verdiğini göstermiştir.
Journal Section | Research Articles |
---|---|
Authors | |
Publication Date | August 25, 2017 |
Submission Date | September 5, 2017 |
Acceptance Date | July 10, 2017 |
Published in Issue | Year 2017 Volume: 3 Issue: 2 |