Research Article
BibTex RIS Cite

Kaplama Öncesi Farklı Yüzey İşlemlerinin Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Etkileri

Year 2022, Volume: 8 Issue: 2, 385 - 392, 01.09.2022

Abstract

Bu çalışmada, grafen oksit kaplama öncesi AA5754 alüminyum alaşımı yüzeyine uygulanan dört farklı yüzey işleminin korozyon davranışına etkileri araştırılmıştır. Kaplama işlemi öncesinde dört farklı numune grubuna 180, 320, 800 ve 1200 tane numaralı SiC esaslı zımparalar ile yüzey hazırlama işlemi yapılmıştır. Alüminyum alaşımı numuneler, 5 V potansiyel ve 5 dakika süre uygulanarak elektroforetik biriktirme prosesi ile grafen oksit kaplama yapılmıştır. Kaplama yapılan dört farklı grup numunelere tuzlu su çözeltisinde elektrokimyasal korozyon testleri uygulanmıştır. Elektrokimyasal korozyon testlerinde potansiyodinamik yöntem kullanılarak polarizasyon ve Tafel polarizasyon eğrileri elde edilmiştir. Korozyon deneyleri sonuçlarına göre, grafen oksit kaplama öncesi alüminyum alaşımı yüzeyine yapılan zımparalama işleminde, zımpara tane numarası arttıkça yani zımpara tane boyutu azaldıkça, korozyon hızının azaldığı, korozyon direncinin arttığı belirlenmiştir.

References

  • [1] R. J. Mills, B. Y. Lattimer, S. W. Case, A. P. Mouritz, “The influence of sensitization and corrosion on creep of 5083-H116”, Corrosion Science, vol. 143, pp. 1-9, (2018). Doi: 10.1016/j.corsci.2018.07.036
  • [2] E. Canepa, R. Stifanese, L. Merotto, P. Traverso, “Corrosion behavior of aluminum alloys in deep-sea environment: A review and the KM3NeT test results”, Marine Structures, vol. 59, pp. 271-284, (2018). Doi: 10.1016/j.marstruc.2018.02.006
  • [3] K. Karacif, H. Karabulut, “Alümina takviyeli alüminyum esaslı kompozit malzemelerin poliprol ile kaplanması ve korozyon davranışının incelenmesi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 20, pp. 118-128, (2020). Doi: 10.35414/akufemubid.629740
  • [4] K. Karacif, T. Kıyak, B. İnem, “Coating of aluminum with conducting polymer and investigation of the effect of corrosion on coating microstructure”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 25, no. 2, pp. 235-241, (2010).
  • [5] Z. Li, D. Yi, C. Tan, B. Wang, “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, vol. 817, pp. 152690, (2020). Doi: 10.1016/j.jallcom.2019.152690
  • [6] H. Ezuber, A. El-Houd, F. El-Shawesh, “A study on the corrosion behavior of aluminum alloys in seawater”, Materials and Design, vol. 29, pp. 801-805, (2008). Doi: 10.1016/j.matdes.2007.01.021
  • [7] S. J. Kim, S. K. Kim, J. C. Park, “The corrosion and mechanical properties of Al alloy 5083-H116 in metal inert gas welding based on slow strain rate test”, Surface and Coatings Technology, vol. 205, pp. 573-578, (2010). Doi: 10.1016/j.surfcoat.2010.04.039
  • [8] S. J. Lee, Y. S. Park, S. J. Kim, “Potentiostatic corrosion protection technology under cavitation condition for 5083-H116 Al alloy”, Transactions of Nonferrous Metals Society of China, vol. 23, no. 11, pp. 3206-3214, (2013). Doi: 10.1016/S1003-6326(13)62854-X
  • [9] S. Naghdi, B. Jaleh, A. Ehsani, “Electrophoretic deposition of graphene oxide on aluminum: Characterization, low thermal annealing, surface and anticorrosive properties”, Bulletin of the Chemical Society of Japan, vol. 88, no. 5, pp. 722-728, (2015). Doi: 10.1246/bcsj.20140402
  • [10] X. Zhang, D.C. Zhang, Y. Chen, X. Z. Sun, Y. W. Ma, “Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties”, Chinese Science Bulletin, vol. 57, no. 23, pp. 3045-3050, (2012). Doi: 10.1007/s11434-012-5256-2
  • [11] L. Chen, Y. Tang, K. Wang, C. Liu, S. Luo, “Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application”, Electrochemistry Communications, vol. 13, pp. 133-137, (2011). Doi: 10.1002/smll.201002340
  • [12] A. M. A. Al-Sammarraie, M. H. Raheema, “Electrodeposited reduced graphene oxide films on stainless steel, copper, and aluminum for corrosion protection enhancement”, International Journal of Corrosion, vol. 2017, pp. 1-9, (2017). Doi: 10.1155/2017/6939354
  • [13] N. H. Abu Bakar, G. A. M. Ali, J. Ismail, H. Algarni, K. F. Chong, “Size-dependent corrosion behavior of graphene oxide coating”, Progress in Organic Coatings, vol. 134, pp. 272-280, (2019). Doi: 10.1016/jporgcoat.2019.05.011
  • [14] Y. Ma, J. Han, M. Wang, X. Chen, S. Jia, “Electrophoretic deposition of graphene-based materials: A review of materials and their applications”, Journal of Materiomics, vol. 4, no. 2, pp. 108-120, (2018). Doi: 10.1016/j.jmat.2018.02.004
  • [15] A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, “Applications of graphene electrophoretic deposition. A review”, Journal of Physical Chemistry B, vol. 117, no. 6, pp. 1502-1515, (2013). Doi: 10.1021/jp3064917
  • [16] G. Zhu, X. Cui, Y. Zhang, S. Chen, M. Dong, H. Liu, Q. Shao, T. Ding, S. Wu, Z. Guo, “Poly (vinyl butyral)/Graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion”, Polymer, vol. 172, pp. 415-422, (2019). Doi: 10.1016/j.polymer.2019.03.056
  • [17] M. M. Alrashed, M. D. Soucek, S. C. Jana, “Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings”, Progress in Organic Coatings, vol. 134, pp. 197-208, (2019). Doi: 10.1016/j.porgcoat.2019.04.057
  • [18] H. Zhu, L. Yue, C. Zhuang, Y. Zhang, X. Liu, Y. Yin, S. Chen, “Fabrication and characterization of self-assembled graphene oxide/silane coatings for corrosion resistance”, Surface & Coatings Technology, vol. 304, pp. 76-84, (2016). Doi: 10.1016/j.surfcoat.2016.07.002
  • [19] H. Jang, J. H. Kim, H. Kang, D. Bae, H. Chang, H. Choi, “Reduced graphene oxide as a protection layer for Al”, Applied Surface Science, vol. 407, pp. 1-7, (2017). Doi: 10.1016/j.apsusc.2017.02.041
  • [20] R. R. Laleh, H. Savaloni, F. Abdi, Y. Abdi, “Corrosion inhibition enhancement of Al alloy by graphene oxide coating in NaCl solution”, Progress in Organic Coatings, vol. 127, pp. 300-307, (2019). Doi: 10.1016/j.porgcoat.2018.11.031
  • [21] A. Li, S. Chen, Z. Ma, M. Sun, G. Zhu, Y. Zhang, W. Wang, “Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly (methylhydrosiloxane) composite coating for AA2024 aluminum alloy”, Diamond & Related Materials, vol. 116, pp. 108397, (2021). Doi: 10.1016/j.diamond.2021.108397
  • [22] T. Monetta, A. Acquesta, A. Carangelo, C. Naddeo, L. Guadagno, “Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate”, Progress in Organic Coatings, vol. 135, pp. 7-18, (2019). Doi: 10.1016/j.porgcoat.2019.05.031
  • [23] S. J. R. Prabakar, Y. H. Hwang, E. G. Bae, D. K. Lee, M. Pyo, “Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries”, Carbon, vol. 52, pp. 128-136, (2013). Doi: 10.1016/j.carbon.2012.09.013
  • [24] V. M. Stankovic, I. Jevremovic, I. Jung, K. Y. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution”, Carbon, vol. 75, pp. 335-344, (2014). Doi: 10.1016/j.carbon.2014.04.012
  • [25] Y. Tian, W. Wang, L. Zhong, X. Xiang, X. Zhang, “Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061”, Progress in Organic Coatings, vol. 163, pp. 106655, (2022). Doi: 10.1016/j.porgcoat.2021.106655106655

The Effects of Different Surface Treatments before Coating on Corrosion Properties of Aluminum Alloy Coated with Graphene Oxide

Year 2022, Volume: 8 Issue: 2, 385 - 392, 01.09.2022

Abstract

In this study, the effects of four different surface treatments applied on the AA5754 aluminum alloy surface before graphene oxide coating on the corrosion behavior were investigated. Before the coating process, surface preparation was performed with SiC based grindingpapers with 180, 320, 800 and 1200 grit numbers on four different sample groups. Graphene oxide coating was made by electrophoretic deposition process by applying 5 V potential and 5 minutes to aluminum alloy samples. Electrochemical corrosion tests in salt water solution were applied to four different groups of samples that were coated. Polarization and Tafel polarization curves were obtained by using the potentiodynamic method in electrochemical corrosion tests. According to the results of the corrosion experiments, it was determined that the corrosion rate decreased and the corrosion resistance increased as the grindingpaper grain number increased, that is, as the grindingpaper grain size decreased, in the grinding process on the aluminum alloy surface before graphene oxide coating.

References

  • [1] R. J. Mills, B. Y. Lattimer, S. W. Case, A. P. Mouritz, “The influence of sensitization and corrosion on creep of 5083-H116”, Corrosion Science, vol. 143, pp. 1-9, (2018). Doi: 10.1016/j.corsci.2018.07.036
  • [2] E. Canepa, R. Stifanese, L. Merotto, P. Traverso, “Corrosion behavior of aluminum alloys in deep-sea environment: A review and the KM3NeT test results”, Marine Structures, vol. 59, pp. 271-284, (2018). Doi: 10.1016/j.marstruc.2018.02.006
  • [3] K. Karacif, H. Karabulut, “Alümina takviyeli alüminyum esaslı kompozit malzemelerin poliprol ile kaplanması ve korozyon davranışının incelenmesi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 20, pp. 118-128, (2020). Doi: 10.35414/akufemubid.629740
  • [4] K. Karacif, T. Kıyak, B. İnem, “Coating of aluminum with conducting polymer and investigation of the effect of corrosion on coating microstructure”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 25, no. 2, pp. 235-241, (2010).
  • [5] Z. Li, D. Yi, C. Tan, B. Wang, “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, vol. 817, pp. 152690, (2020). Doi: 10.1016/j.jallcom.2019.152690
  • [6] H. Ezuber, A. El-Houd, F. El-Shawesh, “A study on the corrosion behavior of aluminum alloys in seawater”, Materials and Design, vol. 29, pp. 801-805, (2008). Doi: 10.1016/j.matdes.2007.01.021
  • [7] S. J. Kim, S. K. Kim, J. C. Park, “The corrosion and mechanical properties of Al alloy 5083-H116 in metal inert gas welding based on slow strain rate test”, Surface and Coatings Technology, vol. 205, pp. 573-578, (2010). Doi: 10.1016/j.surfcoat.2010.04.039
  • [8] S. J. Lee, Y. S. Park, S. J. Kim, “Potentiostatic corrosion protection technology under cavitation condition for 5083-H116 Al alloy”, Transactions of Nonferrous Metals Society of China, vol. 23, no. 11, pp. 3206-3214, (2013). Doi: 10.1016/S1003-6326(13)62854-X
  • [9] S. Naghdi, B. Jaleh, A. Ehsani, “Electrophoretic deposition of graphene oxide on aluminum: Characterization, low thermal annealing, surface and anticorrosive properties”, Bulletin of the Chemical Society of Japan, vol. 88, no. 5, pp. 722-728, (2015). Doi: 10.1246/bcsj.20140402
  • [10] X. Zhang, D.C. Zhang, Y. Chen, X. Z. Sun, Y. W. Ma, “Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties”, Chinese Science Bulletin, vol. 57, no. 23, pp. 3045-3050, (2012). Doi: 10.1007/s11434-012-5256-2
  • [11] L. Chen, Y. Tang, K. Wang, C. Liu, S. Luo, “Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application”, Electrochemistry Communications, vol. 13, pp. 133-137, (2011). Doi: 10.1002/smll.201002340
  • [12] A. M. A. Al-Sammarraie, M. H. Raheema, “Electrodeposited reduced graphene oxide films on stainless steel, copper, and aluminum for corrosion protection enhancement”, International Journal of Corrosion, vol. 2017, pp. 1-9, (2017). Doi: 10.1155/2017/6939354
  • [13] N. H. Abu Bakar, G. A. M. Ali, J. Ismail, H. Algarni, K. F. Chong, “Size-dependent corrosion behavior of graphene oxide coating”, Progress in Organic Coatings, vol. 134, pp. 272-280, (2019). Doi: 10.1016/jporgcoat.2019.05.011
  • [14] Y. Ma, J. Han, M. Wang, X. Chen, S. Jia, “Electrophoretic deposition of graphene-based materials: A review of materials and their applications”, Journal of Materiomics, vol. 4, no. 2, pp. 108-120, (2018). Doi: 10.1016/j.jmat.2018.02.004
  • [15] A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, “Applications of graphene electrophoretic deposition. A review”, Journal of Physical Chemistry B, vol. 117, no. 6, pp. 1502-1515, (2013). Doi: 10.1021/jp3064917
  • [16] G. Zhu, X. Cui, Y. Zhang, S. Chen, M. Dong, H. Liu, Q. Shao, T. Ding, S. Wu, Z. Guo, “Poly (vinyl butyral)/Graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion”, Polymer, vol. 172, pp. 415-422, (2019). Doi: 10.1016/j.polymer.2019.03.056
  • [17] M. M. Alrashed, M. D. Soucek, S. C. Jana, “Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings”, Progress in Organic Coatings, vol. 134, pp. 197-208, (2019). Doi: 10.1016/j.porgcoat.2019.04.057
  • [18] H. Zhu, L. Yue, C. Zhuang, Y. Zhang, X. Liu, Y. Yin, S. Chen, “Fabrication and characterization of self-assembled graphene oxide/silane coatings for corrosion resistance”, Surface & Coatings Technology, vol. 304, pp. 76-84, (2016). Doi: 10.1016/j.surfcoat.2016.07.002
  • [19] H. Jang, J. H. Kim, H. Kang, D. Bae, H. Chang, H. Choi, “Reduced graphene oxide as a protection layer for Al”, Applied Surface Science, vol. 407, pp. 1-7, (2017). Doi: 10.1016/j.apsusc.2017.02.041
  • [20] R. R. Laleh, H. Savaloni, F. Abdi, Y. Abdi, “Corrosion inhibition enhancement of Al alloy by graphene oxide coating in NaCl solution”, Progress in Organic Coatings, vol. 127, pp. 300-307, (2019). Doi: 10.1016/j.porgcoat.2018.11.031
  • [21] A. Li, S. Chen, Z. Ma, M. Sun, G. Zhu, Y. Zhang, W. Wang, “Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly (methylhydrosiloxane) composite coating for AA2024 aluminum alloy”, Diamond & Related Materials, vol. 116, pp. 108397, (2021). Doi: 10.1016/j.diamond.2021.108397
  • [22] T. Monetta, A. Acquesta, A. Carangelo, C. Naddeo, L. Guadagno, “Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate”, Progress in Organic Coatings, vol. 135, pp. 7-18, (2019). Doi: 10.1016/j.porgcoat.2019.05.031
  • [23] S. J. R. Prabakar, Y. H. Hwang, E. G. Bae, D. K. Lee, M. Pyo, “Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries”, Carbon, vol. 52, pp. 128-136, (2013). Doi: 10.1016/j.carbon.2012.09.013
  • [24] V. M. Stankovic, I. Jevremovic, I. Jung, K. Y. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution”, Carbon, vol. 75, pp. 335-344, (2014). Doi: 10.1016/j.carbon.2014.04.012
  • [25] Y. Tian, W. Wang, L. Zhong, X. Xiang, X. Zhang, “Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061”, Progress in Organic Coatings, vol. 163, pp. 106655, (2022). Doi: 10.1016/j.porgcoat.2021.106655106655
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Kubilay Karacif 0000-0001-7180-7897

Duygu Candemir 0000-0002-6186-0122

Publication Date September 1, 2022
Submission Date February 23, 2022
Acceptance Date June 29, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

IEEE K. Karacif and D. Candemir, “Kaplama Öncesi Farklı Yüzey İşlemlerinin Grafen Oksit Kaplanmış Alüminyum Alaşımının Korozyon Davranışına Etkileri”, GJES, vol. 8, no. 2, pp. 385–392, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg