Research Article
BibTex RIS Cite

Investigation of the Effects of Mechanical Washing Resistance and Weather Conditions on Chemically Strengthened Crystal Glasses

Year 2024, Volume: 10 Issue: 2, 193 - 205, 31.08.2024

Abstract

The chemical tempering method is a versatile process applicable to glass of various sizes, complex shapes, and thin structures (up to 0.5 mm). In this study, the effects of mechanical washing resistance and weather conditions on both untempered and chemically tempered glass were experimentally explored. Tempered samples exhibit an average Compressive Stress (CS) of 413 MPa (±8 MPa), a Layer Depth (DOL) averaging 20 µm (±2 µm), and Central Stress (CT) averaging 9 MPa (±0.6 MPa). Despite this SEM images show no visible impact on surface morphology post-tempering. However, EDS spectra indicate an increased potassium ratio, confirming successful chemical tempering. The hardness of chemically tempered glass is 6.16 GPa (±0.18), significantly higher than untempered glass at 5.53 GPa (±0.12). In the Free Fall Test, untempered glass drops an average of 16 cm, while tempered glass surpasses 28 cm with no breakage. During the Bending Test, untempered glass bends 6 degrees on average, whereas tempered glass exceeds 13 degrees without breaking. Chemically tempered glass displays enhanced resistance to hydrolysis, with no significant difference noted in dishwasher resistance. Overall, tempered glass demonstrates superior breakage resistance under specified test conditions.

Project Number

2021FEBE046

References

  • [1] D. B. Thombre and K. Singh, “Relaxation behaviour of lithium-borosilicate glasses,” International Journal of Engineering Research, vol. 3, no. 10, pp. 602–607, Oct. 2014. doi:10.17950/ijer/v3s10/1010
  • [2] P. A. E. Spectrometry, “Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) 1,” 2002.
  • [3] N. J. Kreidl, “Recent applications of Glass Science,” Journal of Non-Crystalline Solids, vol. 123, no. 1–3, pp. 377–384, Aug. 1990. doi:10.1016/0022-3093(90)90810-9
  • [4] M. C. Brierley and P. W. France, “Neodymium-doped fluoro-zirconate fibre laser,” Electronics Letters, vol. 23, no. 16, p. 815, 1987. doi:10.1049/el:19870578
  • [5] M. Moriyama and K. Kamata, “Strengthening of glass by amorphous sin x c y ceramic films,” Journal of Materials Science Letters, vol. 6, no. 10, pp. 1141–1144, Oct. 1987. doi:10.1007/bf01729163
  • [6] T. A. Michalske and S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” Journal of the American Ceramic Society, vol. 66, no. 4, pp. 284–288, Apr. 1983. doi: 10.1111/J.1151-2916.1983.TB15715.X
  • [7] K. C. Datsiou and M. Overend, “Artificial ageing of glass with sand abrasion,” Constr Build Mater, vol. 142, pp. 536–551, Jul. 2017. doi: 10.1016/J.CONBUILDMAT.2017.03.094
  • [8] Y. A. Gösterişlioğlu, A. E. Ersundu, M. Çelikbilek Ersundu, and Sökmen, “Investigation the effect of weathering on chemically strengthened flat glasses,” J Non Cryst Solids, vol. 544, p. 120192, Sep. 2020. doi:10.1016/J.JNONCRYSOL.2020.120192
  • [9] A. Ghosh and S. Neogi, “Impact of dust and other environmental factors on glass transmittance in warm and humid climatic zone,” Clean Technol Environ Policy, vol. 19, no. 4, pp. 1215–1221, Oct. 2017. doi:10.1007/S10098-016-1302-0/FIGURES/8
  • [10] S. M. Wiederhorn, “Influence of Water Vapor on Crack Propagation in Soda-Lime Glass,” Journal of the American Ceramic Society, vol. 50, no. 8, pp. 407–414, Aug. 1967. doi:10.1111/J.1151-2916.1967.TB15145.X
  • [11] S. M. Wiederhorn and L. H. Bolz, “Stress Corrosion and Static Fatigue of Glass,” Journal of the American Ceramic Society, vol. 53, no. 10, pp. 543–548, Oct. 1970. doi:10.1111/J.1151-2916.1970.TB15962.X
  • [12] V. Petrušková, P. Vrabel, P. Šimurka, P. Šajgalík, and M. Maryška, “Surface damage of two different wineglasses during dishwashing process,” Ceramics Silikáty, vol. 51, pp. 57–66, 2007.
  • [13] Y. A. Gösterişlioğlu, A. E. Ersundu, M. Çelikbilek Ersundu, and Sökmen, “Investigation the effect of weathering on chemically strengthened flat glasses,” J Non Cryst Solids, vol. 544, p. 120192, Sep. 2020. doi:10.1016/J.JNONCRYSOL.2020.120192
  • [14] V. F. Solinov, “Ways to Strengthen Glass: Toughening, Ion-Exchange,” Glass and Ceramics (English translation of Steklo i Keramika), vol. 72, no. 5–6, pp. 191–193, Sep. 2015. doi:10.1007/S10717-015-9753-Z/TABLES/1
  • [15] J. S. Olcott, “Chemical Strengthening of Glass,” Science (1979), vol. 140, no. 3572, pp. 1189–1193, Jun. 1963. doi:10.1126/SCIENCE.140.3572.1189
  • [16] S. Karlsson, B. Jonson, and C. Stålhandske, “The technology of chemical glass strengthening-a review,” Glass Technology, vol. 51, no. 2, pp. 41–54, 2010.
  • [17] A. K. Varshneya, “Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned,” Int J Appl Glass Sci, vol. 1, no. 2, pp. 131–142, Jun. 2010. doi:10.1111/J.2041-1294.2010.00010.X
  • [18] I. W. Donald, “Methods for improving the mechanical properties of oxide glasses,” J Mater Sci, vol. 24, no. 12, pp. 4177–4208, Dec. 1989. doi:10.1007/BF00544488/METRICS
  • [19] K. C. Chang, L. T. Tung, and Y. C. Liu, “P-66: The Mechanical Properties of Aluminosilicate Glass with Chemical Strengthening,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 1226–1229, Jun. 2014. doi:10.1002/J.2168-0159.2014.TB00320.X
  • [20] A. K. Varshneya, “Chemical strengthening of glass: lessons learned and yet to be learned,” International Journal of Applied Glass Science, vol. 1, no. 2, pp. 131–142, Jun. 2010. doi:10.1111/j.2041-1294.2010.00010.x
  • [21] R. Gy, “Ion exchange for glass strengthening,” Materials Science & Engineering. B, Solid-state Materials for Advanced Technology (Print), vol. 149, no. 2, pp. 159–165, Mar. 2008. doi:10.1016/j.mseb.2007.11.029

Mekanik Bulaşik Yikama Direncinin Ve Hava Şartlarının Kimyasal Olarak Güçlendirilmiş Kristal Camlar Üzerindeki Etkisinin İncelenmesi

Year 2024, Volume: 10 Issue: 2, 193 - 205, 31.08.2024

Abstract

Kimyasal temperleme yöntemi, çeşitli boyutlarda, karmaşık şekillerde ve ince yapılardaki (0,5 mm'ye kadar) camlara uygulanabilen çok yönlü bir işlemdir. Bu çalışmada mekanik yıkama direncinin ve hava koşullarının hem temperlenmemiş hem de kimyasal olarak temperlenmiş camlara etkisi deneysel olarak araştırılmıştır. Temperlenmiş numuneler ortalama 413 MPa (±8 MPa) Basınç Gerilimi (CS), ortalama 20 µm (±2 µm) Katman Derinliği (DOL) ve ortalama 9 MPa (±0,6 MPa) Merkezi Gerilim (CT) sergiler. Buna rağmen SEM görüntüleri yüzey morfolojisi sonradan temperleme üzerinde gözle görülür bir etki göstermemektedir. Bununla birlikte, EDS spektrumları, başarılı kimyasal tavlamayı doğrulayan artan bir potasyum oranına işaret etmektedir. Kimyasal olarak temperlenmiş camın sertliği 6,16 GPa (±0,18) olup, 5,53 GPa (±0,12) ile temperlenmemiş camdan önemli ölçüde daha yüksektir. Serbest Düşme Testinde temperlenmemiş cam ortalama 16 cm düşerken, temperli cam 28 cm'yi kırılmadan aşar. Eğilme Testi sırasında tempersiz cam ortalama 6 derece bükülürken, temperli cam kırılmadan 13 dereceyi aşar. Kimyasal olarak temperlenmiş cam, hidrolize karşı daha fazla direnç gösterirken, bulaşık makinesi direncinde önemli bir fark görülmedi. Genel olarak temperli cam, belirtilen test koşulları altında üstün kırılma direnci gösterir.

Supporting Institution

Pamukkale University

Project Number

2021FEBE046

References

  • [1] D. B. Thombre and K. Singh, “Relaxation behaviour of lithium-borosilicate glasses,” International Journal of Engineering Research, vol. 3, no. 10, pp. 602–607, Oct. 2014. doi:10.17950/ijer/v3s10/1010
  • [2] P. A. E. Spectrometry, “Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) 1,” 2002.
  • [3] N. J. Kreidl, “Recent applications of Glass Science,” Journal of Non-Crystalline Solids, vol. 123, no. 1–3, pp. 377–384, Aug. 1990. doi:10.1016/0022-3093(90)90810-9
  • [4] M. C. Brierley and P. W. France, “Neodymium-doped fluoro-zirconate fibre laser,” Electronics Letters, vol. 23, no. 16, p. 815, 1987. doi:10.1049/el:19870578
  • [5] M. Moriyama and K. Kamata, “Strengthening of glass by amorphous sin x c y ceramic films,” Journal of Materials Science Letters, vol. 6, no. 10, pp. 1141–1144, Oct. 1987. doi:10.1007/bf01729163
  • [6] T. A. Michalske and S. W. Freiman, “A Molecular Mechanism for Stress Corrosion in Vitreous Silica,” Journal of the American Ceramic Society, vol. 66, no. 4, pp. 284–288, Apr. 1983. doi: 10.1111/J.1151-2916.1983.TB15715.X
  • [7] K. C. Datsiou and M. Overend, “Artificial ageing of glass with sand abrasion,” Constr Build Mater, vol. 142, pp. 536–551, Jul. 2017. doi: 10.1016/J.CONBUILDMAT.2017.03.094
  • [8] Y. A. Gösterişlioğlu, A. E. Ersundu, M. Çelikbilek Ersundu, and Sökmen, “Investigation the effect of weathering on chemically strengthened flat glasses,” J Non Cryst Solids, vol. 544, p. 120192, Sep. 2020. doi:10.1016/J.JNONCRYSOL.2020.120192
  • [9] A. Ghosh and S. Neogi, “Impact of dust and other environmental factors on glass transmittance in warm and humid climatic zone,” Clean Technol Environ Policy, vol. 19, no. 4, pp. 1215–1221, Oct. 2017. doi:10.1007/S10098-016-1302-0/FIGURES/8
  • [10] S. M. Wiederhorn, “Influence of Water Vapor on Crack Propagation in Soda-Lime Glass,” Journal of the American Ceramic Society, vol. 50, no. 8, pp. 407–414, Aug. 1967. doi:10.1111/J.1151-2916.1967.TB15145.X
  • [11] S. M. Wiederhorn and L. H. Bolz, “Stress Corrosion and Static Fatigue of Glass,” Journal of the American Ceramic Society, vol. 53, no. 10, pp. 543–548, Oct. 1970. doi:10.1111/J.1151-2916.1970.TB15962.X
  • [12] V. Petrušková, P. Vrabel, P. Šimurka, P. Šajgalík, and M. Maryška, “Surface damage of two different wineglasses during dishwashing process,” Ceramics Silikáty, vol. 51, pp. 57–66, 2007.
  • [13] Y. A. Gösterişlioğlu, A. E. Ersundu, M. Çelikbilek Ersundu, and Sökmen, “Investigation the effect of weathering on chemically strengthened flat glasses,” J Non Cryst Solids, vol. 544, p. 120192, Sep. 2020. doi:10.1016/J.JNONCRYSOL.2020.120192
  • [14] V. F. Solinov, “Ways to Strengthen Glass: Toughening, Ion-Exchange,” Glass and Ceramics (English translation of Steklo i Keramika), vol. 72, no. 5–6, pp. 191–193, Sep. 2015. doi:10.1007/S10717-015-9753-Z/TABLES/1
  • [15] J. S. Olcott, “Chemical Strengthening of Glass,” Science (1979), vol. 140, no. 3572, pp. 1189–1193, Jun. 1963. doi:10.1126/SCIENCE.140.3572.1189
  • [16] S. Karlsson, B. Jonson, and C. Stålhandske, “The technology of chemical glass strengthening-a review,” Glass Technology, vol. 51, no. 2, pp. 41–54, 2010.
  • [17] A. K. Varshneya, “Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned,” Int J Appl Glass Sci, vol. 1, no. 2, pp. 131–142, Jun. 2010. doi:10.1111/J.2041-1294.2010.00010.X
  • [18] I. W. Donald, “Methods for improving the mechanical properties of oxide glasses,” J Mater Sci, vol. 24, no. 12, pp. 4177–4208, Dec. 1989. doi:10.1007/BF00544488/METRICS
  • [19] K. C. Chang, L. T. Tung, and Y. C. Liu, “P-66: The Mechanical Properties of Aluminosilicate Glass with Chemical Strengthening,” SID Symposium Digest of Technical Papers, vol. 45, no. 1, pp. 1226–1229, Jun. 2014. doi:10.1002/J.2168-0159.2014.TB00320.X
  • [20] A. K. Varshneya, “Chemical strengthening of glass: lessons learned and yet to be learned,” International Journal of Applied Glass Science, vol. 1, no. 2, pp. 131–142, Jun. 2010. doi:10.1111/j.2041-1294.2010.00010.x
  • [21] R. Gy, “Ion exchange for glass strengthening,” Materials Science & Engineering. B, Solid-state Materials for Advanced Technology (Print), vol. 149, no. 2, pp. 159–165, Mar. 2008. doi:10.1016/j.mseb.2007.11.029
There are 21 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Nurcin Ozkaya 0000-0003-4593-9604

Muath Njjar 0009-0001-3375-1631

Ezgi Biçer 0009-0005-2578-8564

Nahide Ozben 0009-0005-5214-8220

Abdullah Akdoğan 0000-0002-7120-4380

Project Number 2021FEBE046
Early Pub Date June 4, 2024
Publication Date August 31, 2024
Submission Date December 6, 2023
Acceptance Date May 9, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE N. Ozkaya, M. Njjar, E. Biçer, N. Ozben, and A. Akdoğan, “Investigation of the Effects of Mechanical Washing Resistance and Weather Conditions on Chemically Strengthened Crystal Glasses”, GJES, vol. 10, no. 2, pp. 193–205, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg