Research Article
BibTex RIS Cite

Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation

Year 2015, Volume: 28 Issue: 4, 571 - 575, 16.12.2015

Abstract

The Dirac equation in (1+1) dimension with the complex vector potential coupling that leads to an effective Hulthen potential model is solved. Polynomial solutions are obtained using the  method of Nikiforov-Uvarov. Energy spectrum and corresponding wave-functions are obtained.

References

  • C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243.
  • For a review, see C. M. Bender Rep. Prog. Phys. 70 (2007) 947.
  • C. M. Bender and H. F. Jones, Phys. Rev. A 85 (2012) 052118.
  • M. Znojil, J. Phys. A: Math. Gen. 33 (2000) L61-2; M. Znojil, M. Tater, J. Phys. A: Math. Gen. 34 (2001) 1793.
  • G. L´evai, P. Siegl, M. Znojil, J. Phys. A: Math. Theor. 42 (2009) 295201.
  • G. Levai, M. Znojil, Mod. Phys. Letters A 16 (2001) 1973;
  • B. Bagchi, C. Quesne, Phys.Lett. A 273 (2000) 285- 292; Phys. Lett. A 301 (2002) 173.
  • C. Quesne, J. Phys. A 41 (2008) 244022.
  • C. S. Jia, A. de S. Dutra, Ann. Phys. 323 (2008) 566.
  • L. B. Castro, Phys. Lett. A, 375(25) (2011) 2510.
  • A. Arda, R. Sever, Phs. Scr. 82(6) (2010) 065007.
  • S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.
  • O. Mustafa, S. H. Mazharimousavi, Int. J. Theo. Phys. 48(1) (2009) 183.
  • A. D. Alhaidari, Phys. Lett. A, 322 (2004) 72.
  • X. L. Peng, J. Y. Liu, C. S. Jia, Phys. Lett. A, 352 (2006) 478.
  • C. S. Jia, A. de S. Dutra, J. Phys. A: Math. Gen. 39 (2006) 11877.
  • F. Cannata, A. Ventura, J. Phys. A : Math. Theor. 43 (2010) 075305: 1-19.
  • C. M. Bender, P. D. Mannheim, Phys. Rev. D 84 (2011) 105038.
  • R. Giachetti, V. Grecchi, J.Phys.A: Math. Theo. 44 (2011) 095308.
  • S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.
  • F. Cannata, A. Ventura, Phys. Lett. A 372 (2008) 941.
  • H. Eˆgrifes, R. Sever, Phys. Lett. A 344 (2005) 117.
  • S. M. Ikhdair, J. Mod. Phys. 3(2) (2012) 170-179.
  • O. L. de Lange, R. E. Raab, Oxford University Press USA, 1992, ISBN-10: 0198539614 ISBN- 13: 978-0198539612; L. Infeld and T. E. Hull, Rep. Mod. Phys. 23 (1951) 21 8 .
  • Junker G, Supersymmetric Methods in Quantum and Statical Physics, 1996 (Berlin: Springer); F. Cooper, A. Khare and U. Sukhatme Phys. Rep. 25 (1995)
  • B. Bagchi, Supersymmetry in Quantum and Classical Mechanics (New York: Chapman and Hall) 2001; W. Miller Symmetry and separation of variables (Massachusetts: Reading) 1977.
  • A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics: a unified introduction with applications, Boston, MA: Birkhauser, 1988.
  • H. Ciftci, R. L. Hall, N. Saad, J. Phys. A 36 (2003) 11807-11816.
  • M. Znojil, J. Phys. A: Math. Gen. 33 4561 (2000)- 4572; M. Znojil, Phys. Lett. A 264 (1999) 108.
  • A. N. Ikot et al, Few-Body Syst. 54 2053 2013.
  • E. Maghsoodi, H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Chinese Physics C Vol. 37, No. 4 (2013) 043105.
  • Akpan N. Ikot et al, Z. Naturforsch. 68a, 499 509 (2013); H. Hassanabadi, E. Maghsoodiand S. Zarrinkamar, Commun. Theor. Phys. 58 807 2012.
  • H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H.Rahimov, J. Math. Phys. 53 022104 2012.
  • Akpan N. Ikot et al, J.KoreanPhys. Soc. 64(9) 1248 2014; AkpanN.Ikot, E. Maghsoodi, O. A. Awoga, S. Zarrinkamarand H. Hassanabadi, Quant. Phys. Lett. 3(1) 7 (2014).
  • A. Shehata, Gazi Univ. Jour. Science, 28 464 2015.
  • M. Nanova, EPJ Web of Conferences, 97 00022 ( 2015).
Year 2015, Volume: 28 Issue: 4, 571 - 575, 16.12.2015

Abstract

References

  • C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243.
  • For a review, see C. M. Bender Rep. Prog. Phys. 70 (2007) 947.
  • C. M. Bender and H. F. Jones, Phys. Rev. A 85 (2012) 052118.
  • M. Znojil, J. Phys. A: Math. Gen. 33 (2000) L61-2; M. Znojil, M. Tater, J. Phys. A: Math. Gen. 34 (2001) 1793.
  • G. L´evai, P. Siegl, M. Znojil, J. Phys. A: Math. Theor. 42 (2009) 295201.
  • G. Levai, M. Znojil, Mod. Phys. Letters A 16 (2001) 1973;
  • B. Bagchi, C. Quesne, Phys.Lett. A 273 (2000) 285- 292; Phys. Lett. A 301 (2002) 173.
  • C. Quesne, J. Phys. A 41 (2008) 244022.
  • C. S. Jia, A. de S. Dutra, Ann. Phys. 323 (2008) 566.
  • L. B. Castro, Phys. Lett. A, 375(25) (2011) 2510.
  • A. Arda, R. Sever, Phs. Scr. 82(6) (2010) 065007.
  • S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.
  • O. Mustafa, S. H. Mazharimousavi, Int. J. Theo. Phys. 48(1) (2009) 183.
  • A. D. Alhaidari, Phys. Lett. A, 322 (2004) 72.
  • X. L. Peng, J. Y. Liu, C. S. Jia, Phys. Lett. A, 352 (2006) 478.
  • C. S. Jia, A. de S. Dutra, J. Phys. A: Math. Gen. 39 (2006) 11877.
  • F. Cannata, A. Ventura, J. Phys. A : Math. Theor. 43 (2010) 075305: 1-19.
  • C. M. Bender, P. D. Mannheim, Phys. Rev. D 84 (2011) 105038.
  • R. Giachetti, V. Grecchi, J.Phys.A: Math. Theo. 44 (2011) 095308.
  • S. M. Ikhdair, J. Math. Phys. 51(2) (2010) 023525.
  • F. Cannata, A. Ventura, Phys. Lett. A 372 (2008) 941.
  • H. Eˆgrifes, R. Sever, Phys. Lett. A 344 (2005) 117.
  • S. M. Ikhdair, J. Mod. Phys. 3(2) (2012) 170-179.
  • O. L. de Lange, R. E. Raab, Oxford University Press USA, 1992, ISBN-10: 0198539614 ISBN- 13: 978-0198539612; L. Infeld and T. E. Hull, Rep. Mod. Phys. 23 (1951) 21 8 .
  • Junker G, Supersymmetric Methods in Quantum and Statical Physics, 1996 (Berlin: Springer); F. Cooper, A. Khare and U. Sukhatme Phys. Rep. 25 (1995)
  • B. Bagchi, Supersymmetry in Quantum and Classical Mechanics (New York: Chapman and Hall) 2001; W. Miller Symmetry and separation of variables (Massachusetts: Reading) 1977.
  • A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics: a unified introduction with applications, Boston, MA: Birkhauser, 1988.
  • H. Ciftci, R. L. Hall, N. Saad, J. Phys. A 36 (2003) 11807-11816.
  • M. Znojil, J. Phys. A: Math. Gen. 33 4561 (2000)- 4572; M. Znojil, Phys. Lett. A 264 (1999) 108.
  • A. N. Ikot et al, Few-Body Syst. 54 2053 2013.
  • E. Maghsoodi, H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Chinese Physics C Vol. 37, No. 4 (2013) 043105.
  • Akpan N. Ikot et al, Z. Naturforsch. 68a, 499 509 (2013); H. Hassanabadi, E. Maghsoodiand S. Zarrinkamar, Commun. Theor. Phys. 58 807 2012.
  • H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H.Rahimov, J. Math. Phys. 53 022104 2012.
  • Akpan N. Ikot et al, J.KoreanPhys. Soc. 64(9) 1248 2014; AkpanN.Ikot, E. Maghsoodi, O. A. Awoga, S. Zarrinkamarand H. Hassanabadi, Quant. Phys. Lett. 3(1) 7 (2014).
  • A. Shehata, Gazi Univ. Jour. Science, 28 464 2015.
  • M. Nanova, EPJ Web of Conferences, 97 00022 ( 2015).
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Özlem Yeşiltaş

Publication Date December 16, 2015
Published in Issue Year 2015 Volume: 28 Issue: 4

Cite

APA Yeşiltaş, Ö. (2015). Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation. Gazi University Journal of Science, 28(4), 571-575.
AMA Yeşiltaş Ö. Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation. Gazi University Journal of Science. December 2015;28(4):571-575.
Chicago Yeşiltaş, Özlem. “Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation”. Gazi University Journal of Science 28, no. 4 (December 2015): 571-75.
EndNote Yeşiltaş Ö (December 1, 2015) Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation. Gazi University Journal of Science 28 4 571–575.
IEEE Ö. Yeşiltaş, “Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation”, Gazi University Journal of Science, vol. 28, no. 4, pp. 571–575, 2015.
ISNAD Yeşiltaş, Özlem. “Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation”. Gazi University Journal of Science 28/4 (December 2015), 571-575.
JAMA Yeşiltaş Ö. Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation. Gazi University Journal of Science. 2015;28:571–575.
MLA Yeşiltaş, Özlem. “Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation”. Gazi University Journal of Science, vol. 28, no. 4, 2015, pp. 571-5.
Vancouver Yeşiltaş Ö. Non-PT Symmetric Potentialsand (1 + 1) Dirac Equation. Gazi University Journal of Science. 2015;28(4):571-5.