Research Article
BibTex RIS Cite

Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution

Year 2019, Volume: 32 Issue: 3, 815 - 821, 01.09.2019
https://doi.org/10.35378/gujs.466697

Abstract

In this study the electrophlic addition of bromine to an exocyclic diene, 1,2 dimethylenecyclohexane, was investigated. The bromination of 1,2-dimethylenecyclohexane yielded 1,2-bis(bromomethyl)cylohex-1-en at low temperature. Nevertheless, the bromination of 1,2-dimethylenecyclohexane at room temperature gave 1,4 addition product 1,2-bis(bromomethyl)cylohex-1-en as a main product together with 1-bromo-1-(bromomethyl)-2-methylenecylohexane and 3-bromo-1,2-bis(bromomethyl)cyclohex-1-ene. Similarly, high temperature bromination of 1,2-bismethylenecyclohexane gave the radical bromination products (3-bromo-1,2-bis(bromomethyl)cyclohex-1-ene and 3,6-dibromo-1,2- bis(bromomethyl)cyclohex-1-ene) in addition to the 1,4 addition product. While the bromination of exocylicdiene at room temperature with excess bromine gave tetrabrominated product 1,2-dibromo-1,2-bis(bromomethyl)cyclohexane as a sole product, the bromination of exocyclicdiene in high temperature with excess bromine resulted in a tetra brominated product 1,2-dibromo-1,2-bis(bromomethyl)cyclohexane and the three brominated product 3-bromo-1,2-bis(bromomethyl)cyclohex-1-ene together with the radicalic tetrabrominated product 3,6-dibromo-1,2-bis(bromomethyl)cyclohex-1-ene as main products. However, the high temperature bromination of 1,4 brominated product with excess bromine provided only the radicalic brominated product 3-bromo-1,2-bis(bromomethyl)cyclohex-1-ene and 3,6-dibromo-1,2-bis(bromomethyl)cyclohex-1-ene.Thus the functional agents which can be used as starting material in the synthesis of

many compounds were synthesized, purified and characterized.

References

  • 1. Ozer, M. S.; Kilbas, B.; Balci, M. ARKIVOC, 2013, 4, 388-404.2. (a) Wiclatz, J. E.; Short, J. N. 1952, US 26010, 75, 19520617. (b) Bailey, J. W.; Golden, R. H. J.Am. Chem. Soc. 1953, 75, 4780-4782. (c) Bailey, J. W.; Sorenson, R. W.; J.Am. Chem. Soc. 1954, 76, 5421-5423. (d) Groesbeek M.; Van Galen J. J. A.; Ippel J.H.; Berden J. A.; Lugtenburg J. Rec. Trav. Chim. Pays-Bas 1993, 112, 237-246. (e) Fujiwara, K.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2012, 134(12), 5512-5515. (f) Liang, D.; Zou, Y.; Wang, Q.; Goeke, A., J. Org. Chem. 2014, 79(14), 6726-6731.(g) De Lucchi, O.; Daştan, A.; Altundaş, A. Fabris, F.; Balci, M. Helv. Chim. Acta 2004, 87( 9) 2364-2367. (h) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52(46), 12161-12165. 3. (a) Wittig, G.; Knaus, E. Chem Berr. 1958, 91, 895-907. (b) Wilt, J. W.; Gutman, G.; Raunus W. J. Jr.; Ziegman, A. R. J. Org. Chem. 1967, 32, 893-901.4. (a) Essiz, S.; Sengul, ME.; Sahin, E.; Dastan, A. Turk. J. Chem. 2011, 35, 587-598.(b) Taskesenlioglu, S.; Dastan, A.; Dalkilic, E.; Guney, M.; Abbasoglu, R. New J. Chem. 2010, 34, 141-150. (c) Harmandar, M.; Balcı, M. Tetrahedron Lett. 1985, 26, 5465-5468. (d) Daştan, A.; Balcı, M.; Hökelek, T.; Ülkü, D.; Büyükgüngör, O. Tetrahedron 1994, 50, 10555-10578. (e) Dastan, A.; Tasgesenligil, Y.; Tümer, F.; Balci, M. Tetrahedron 1996, 52, 14005-14020.5. Altundaş, A.; Daştan, A.; McKee, M. M.; Balci, M. Tetrahedron 2000, 56, 6115-6120.6. March, J. Advanced Organic Chemistry; Wiley: New York, 1991 7. Horasan, N.; Kara, Y.; Azizoğlu, A.; Balcı, M.; Tetrahedron 2003, 59, 3691-3699.8. Jahn, R.; Schmidt, U. Chem.Ber. 1975, 108, 630-639.
Year 2019, Volume: 32 Issue: 3, 815 - 821, 01.09.2019
https://doi.org/10.35378/gujs.466697

Abstract

References

  • 1. Ozer, M. S.; Kilbas, B.; Balci, M. ARKIVOC, 2013, 4, 388-404.2. (a) Wiclatz, J. E.; Short, J. N. 1952, US 26010, 75, 19520617. (b) Bailey, J. W.; Golden, R. H. J.Am. Chem. Soc. 1953, 75, 4780-4782. (c) Bailey, J. W.; Sorenson, R. W.; J.Am. Chem. Soc. 1954, 76, 5421-5423. (d) Groesbeek M.; Van Galen J. J. A.; Ippel J.H.; Berden J. A.; Lugtenburg J. Rec. Trav. Chim. Pays-Bas 1993, 112, 237-246. (e) Fujiwara, K.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2012, 134(12), 5512-5515. (f) Liang, D.; Zou, Y.; Wang, Q.; Goeke, A., J. Org. Chem. 2014, 79(14), 6726-6731.(g) De Lucchi, O.; Daştan, A.; Altundaş, A. Fabris, F.; Balci, M. Helv. Chim. Acta 2004, 87( 9) 2364-2367. (h) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52(46), 12161-12165. 3. (a) Wittig, G.; Knaus, E. Chem Berr. 1958, 91, 895-907. (b) Wilt, J. W.; Gutman, G.; Raunus W. J. Jr.; Ziegman, A. R. J. Org. Chem. 1967, 32, 893-901.4. (a) Essiz, S.; Sengul, ME.; Sahin, E.; Dastan, A. Turk. J. Chem. 2011, 35, 587-598.(b) Taskesenlioglu, S.; Dastan, A.; Dalkilic, E.; Guney, M.; Abbasoglu, R. New J. Chem. 2010, 34, 141-150. (c) Harmandar, M.; Balcı, M. Tetrahedron Lett. 1985, 26, 5465-5468. (d) Daştan, A.; Balcı, M.; Hökelek, T.; Ülkü, D.; Büyükgüngör, O. Tetrahedron 1994, 50, 10555-10578. (e) Dastan, A.; Tasgesenligil, Y.; Tümer, F.; Balci, M. Tetrahedron 1996, 52, 14005-14020.5. Altundaş, A.; Daştan, A.; McKee, M. M.; Balci, M. Tetrahedron 2000, 56, 6115-6120.6. March, J. Advanced Organic Chemistry; Wiley: New York, 1991 7. Horasan, N.; Kara, Y.; Azizoğlu, A.; Balcı, M.; Tetrahedron 2003, 59, 3691-3699.8. Jahn, R.; Schmidt, U. Chem.Ber. 1975, 108, 630-639.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Aliye Altundas 0000-0003-4616-4513

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 3

Cite

APA Altundas, A. (2019). Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution. Gazi University Journal of Science, 32(3), 815-821. https://doi.org/10.35378/gujs.466697
AMA Altundas A. Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution. Gazi University Journal of Science. September 2019;32(3):815-821. doi:10.35378/gujs.466697
Chicago Altundas, Aliye. “Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution”. Gazi University Journal of Science 32, no. 3 (September 2019): 815-21. https://doi.org/10.35378/gujs.466697.
EndNote Altundas A (September 1, 2019) Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution. Gazi University Journal of Science 32 3 815–821.
IEEE A. Altundas, “Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution”, Gazi University Journal of Science, vol. 32, no. 3, pp. 815–821, 2019, doi: 10.35378/gujs.466697.
ISNAD Altundas, Aliye. “Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution”. Gazi University Journal of Science 32/3 (September 2019), 815-821. https://doi.org/10.35378/gujs.466697.
JAMA Altundas A. Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution. Gazi University Journal of Science. 2019;32:815–821.
MLA Altundas, Aliye. “Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution”. Gazi University Journal of Science, vol. 32, no. 3, 2019, pp. 815-21, doi:10.35378/gujs.466697.
Vancouver Altundas A. Bromination of 1,2-Dimethylenecyclohexane: Temperature Effect on Product Distribution. Gazi University Journal of Science. 2019;32(3):815-21.