Research Article
BibTex RIS Cite
Year 2019, Volume: 32 Issue: 4, 1283 - 1291, 01.12.2019
https://doi.org/10.35378/gujs.460883

Abstract

References

  • 1. Ruddlesden. S.N.; Popper, P., New Compounds of the K2NIF4 type. Acta Cryst., 1957. 10.2. Shimizu, K., et al., Photocatalytic water splitting over spontaneously hydrated layered tantalate A(2)SrTa(2)O(7)center dot nH(2)O (A=H,K,Rb). Chemistry Letters, 2002(11): p. 1158-1159.3. Dion, M., M. Ganne, and M. Tournoux, Mi(an-1nbno3n+1) Ferroelastic Foliated Perovskites, Where N=2,3 and 4. Revue De Chimie Minerale, 1986. 23(1): p. 61-69.4. Gopalakrishnan, J. and V. Bhat, A2ln2ti3o10 (a = K or Rb, Ln = La or Rare-Earth) - a New Series of Layered Perovskites Exhibiting Ion-Exchange. Inorganic Chemistry, 1987. 26(26): p. 4299-4301.5. Jacobson, A.J., J.W. Johnson, and J.T. Lewandowski, Interlayer Chemistry between Thick Transition-Metal Oxide Layers - Synthesis and Intercalation Reactions of K[Ca2nan-3nbno3n+1] (3 Less-Than-or-Equal-to N Less-Than-or-Equal-to 7). Inorganic Chemistry, 1985. 24(23): p. 3727-3729.6. Toda, K., S. Kurita, and M. Sato, Synthesis and Ionic-Conductivity of Novel Layered Perovskite Compounds, Aglatio4 and Ageutio4. Solid State Ionics, 1995. 81(3-4): p. 267-271.7. Bhuvanesh, N.S.P., et al., Synthesis and structure of novel layered perovskite oxides: Li2La1.78Nb0.66Ti2.34O10, and a new family, Li-2[A(0.5n)B(n)O(3n+1)]. Journal of Materials Chemistry, 1999. 9(12): p. 3093-3100.8. Akbarian-Tefaghi, S., et al., Rapid Topochemical Modification of Layered Perovskites via Microwave Reactions. Inorganic Chemistry, 2016. 55(4): p. 1604-1612.9. Pagnier, T., et al., Phase transition in the Ruddlesden-Popper layered perovskite Li2SrTa2O7. Journal of Solid State Chemistry, 2009. 182(2): p. 317-326.10. Schwarz, K., P. Blaha, and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 2002. 147(1-2): p. 71-76.11. Andersen, O.K., Linear methods in band theory. Phys Rev B., 1975. 12(8): p. 3060-3083.12. Perdew, J.P. and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Physical Review B, 1992. 45(23): p. 13244-13249.13. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.14. Wu, Z.G. and R.E. Cohen, More accurate generalized gradient approximation for solids. Physical Review B, 2006. 73(23).15. Perdew, J.P., et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008. 100(13).16. Birch, F., Finite Elastic Strain of Cubic Crystals. Physical Review, 1947. 71(11): p. 809-824.17. F. D. Murnaghan, Birch-Murnaghan equation of state. Proc. Nat. Acad. Sci, 1944. 50: p. 697.18. Tolbert, L.M., et al., Power and Energy Systems, Proceedings, 2003: p. 317-321.19. AYCIBIN, M., The Electronic and Optical Properties of Li2SrTa2O7 Depending on Phase Transition, International Conference on Physical Chemistry and Functional Materials. 2018: Elazig-Turkey.20. Li, Z.L., et al., First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3. Chinese Physics B, 2014. 23(3).

Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes

Year 2019, Volume: 32 Issue: 4, 1283 - 1291, 01.12.2019
https://doi.org/10.35378/gujs.460883

Abstract

The electronic structures and optical properties of Li2SrTa2O7
belongs Ruddlesden-Popper layered perovskite family are studied by
first-principles self-consistent local density calculations in its orthorhombic
and tetragonal phases. The exchange-correlation potential were introduced
within a framework of the generalizedgradient approximation (GGA). In both
phases, the conduction band minimum is at the zone center while the valance
band is located at H and N high symmetry pointsfororthorhombicand tetragonal
phases, respectively. The dynamic dielectric function, optical properties such
as reflectance, refractivity and extinction coefficient for two phases are
reported for energy range 0-50 eV. The variation in electronic and optical
properties can be interpreted to attribute to higher symmetry, coordination
number or Li, Sr and Ta atoms and packing density in tetragonal phase than in
orthorhombic phase. 

References

  • 1. Ruddlesden. S.N.; Popper, P., New Compounds of the K2NIF4 type. Acta Cryst., 1957. 10.2. Shimizu, K., et al., Photocatalytic water splitting over spontaneously hydrated layered tantalate A(2)SrTa(2)O(7)center dot nH(2)O (A=H,K,Rb). Chemistry Letters, 2002(11): p. 1158-1159.3. Dion, M., M. Ganne, and M. Tournoux, Mi(an-1nbno3n+1) Ferroelastic Foliated Perovskites, Where N=2,3 and 4. Revue De Chimie Minerale, 1986. 23(1): p. 61-69.4. Gopalakrishnan, J. and V. Bhat, A2ln2ti3o10 (a = K or Rb, Ln = La or Rare-Earth) - a New Series of Layered Perovskites Exhibiting Ion-Exchange. Inorganic Chemistry, 1987. 26(26): p. 4299-4301.5. Jacobson, A.J., J.W. Johnson, and J.T. Lewandowski, Interlayer Chemistry between Thick Transition-Metal Oxide Layers - Synthesis and Intercalation Reactions of K[Ca2nan-3nbno3n+1] (3 Less-Than-or-Equal-to N Less-Than-or-Equal-to 7). Inorganic Chemistry, 1985. 24(23): p. 3727-3729.6. Toda, K., S. Kurita, and M. Sato, Synthesis and Ionic-Conductivity of Novel Layered Perovskite Compounds, Aglatio4 and Ageutio4. Solid State Ionics, 1995. 81(3-4): p. 267-271.7. Bhuvanesh, N.S.P., et al., Synthesis and structure of novel layered perovskite oxides: Li2La1.78Nb0.66Ti2.34O10, and a new family, Li-2[A(0.5n)B(n)O(3n+1)]. Journal of Materials Chemistry, 1999. 9(12): p. 3093-3100.8. Akbarian-Tefaghi, S., et al., Rapid Topochemical Modification of Layered Perovskites via Microwave Reactions. Inorganic Chemistry, 2016. 55(4): p. 1604-1612.9. Pagnier, T., et al., Phase transition in the Ruddlesden-Popper layered perovskite Li2SrTa2O7. Journal of Solid State Chemistry, 2009. 182(2): p. 317-326.10. Schwarz, K., P. Blaha, and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 2002. 147(1-2): p. 71-76.11. Andersen, O.K., Linear methods in band theory. Phys Rev B., 1975. 12(8): p. 3060-3083.12. Perdew, J.P. and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Physical Review B, 1992. 45(23): p. 13244-13249.13. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.14. Wu, Z.G. and R.E. Cohen, More accurate generalized gradient approximation for solids. Physical Review B, 2006. 73(23).15. Perdew, J.P., et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008. 100(13).16. Birch, F., Finite Elastic Strain of Cubic Crystals. Physical Review, 1947. 71(11): p. 809-824.17. F. D. Murnaghan, Birch-Murnaghan equation of state. Proc. Nat. Acad. Sci, 1944. 50: p. 697.18. Tolbert, L.M., et al., Power and Energy Systems, Proceedings, 2003: p. 317-321.19. AYCIBIN, M., The Electronic and Optical Properties of Li2SrTa2O7 Depending on Phase Transition, International Conference on Physical Chemistry and Functional Materials. 2018: Elazig-Turkey.20. Li, Z.L., et al., First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3. Chinese Physics B, 2014. 23(3).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Murat Aycıbın 0000-0002-2634-3082

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 4

Cite

APA Aycıbın, M. (2019). Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes. Gazi University Journal of Science, 32(4), 1283-1291. https://doi.org/10.35378/gujs.460883
AMA Aycıbın M. Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes. Gazi University Journal of Science. December 2019;32(4):1283-1291. doi:10.35378/gujs.460883
Chicago Aycıbın, Murat. “Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes”. Gazi University Journal of Science 32, no. 4 (December 2019): 1283-91. https://doi.org/10.35378/gujs.460883.
EndNote Aycıbın M (December 1, 2019) Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes. Gazi University Journal of Science 32 4 1283–1291.
IEEE M. Aycıbın, “Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes”, Gazi University Journal of Science, vol. 32, no. 4, pp. 1283–1291, 2019, doi: 10.35378/gujs.460883.
ISNAD Aycıbın, Murat. “Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes”. Gazi University Journal of Science 32/4 (December 2019), 1283-1291. https://doi.org/10.35378/gujs.460883.
JAMA Aycıbın M. Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes. Gazi University Journal of Science. 2019;32:1283–1291.
MLA Aycıbın, Murat. “Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes”. Gazi University Journal of Science, vol. 32, no. 4, 2019, pp. 1283-91, doi:10.35378/gujs.460883.
Vancouver Aycıbın M. Li2SrTa2O7 Compound: Theoretical Study of Electronic and Optical propertıes. Gazi University Journal of Science. 2019;32(4):1283-91.