Research Article
BibTex RIS Cite
Year 2025, Early View, 1 - 1

Abstract

References

  • [1] Khan, Y., Liu, F. “Consumption of energy from conventional sources a challenge to the green environment: Evaluating the role of energy imports, and energy intensity in Australia”, Environmental Science and Pollution Research, 30: 22712-22727, (2023). DOI: https://doi.org/10.1007/s11356-022-23750-x
  • [2] Kumar, R., Ojha, K., Ahmadi, M. H., Raj, R., Aliehyaei, M., Ahmadi, A., Nabipour, N. “A review status on alternative arrangements of power generation energy resources and reserve in India”, International Journal of Low-Carbon Technologies, 15(2): 224-240, (2020). DOI: https://orcid.org/0000-0002-0097-2534
  • [3] Erdiwansyah, Mahidin, Husin, H., Nasaruddin, Zaki, M., Muhibbuddin. “A critical review of the integration of renewable energy sources with various technologies”, Protection and Control of Modern Power Systems, 6(3): 1-18, (2021). DOI: https://doi.org/10.1186/s41601-021-00181-3
  • [4] Laveyne, J. I., Bozalakov, D., Eetvelde, G. V., Vandevelde, L. “Impact of solar panel orientation on the integration of solar energy in low-voltage distribution grids”, International Journal of Photoenergy, 2020: 1-13, (2020). DOI: https://doi.org/10.1155/2020/2412780
  • [5] Sutikno, T., Purnama, H. S., Widodo, N. S., Sanjeevikumar, P., Sahid, M. R. “A review on non-isolated low-power DC-DC converter topologies with high output gain for solar photovoltaic system applications”, Clean Energy, 6(4): 557-572, (2022). DOI: https://doi.org/ 10.1093/ce/zkac037
  • [6] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Ramani Kannan, Ibrahim, O. “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications”, Ain Shams Engineering Journal, 12(4): 3747-3763, (2021). DOI: https://doi.org/10.1016/j.asej.2021.03.022
  • [7] Shin, S. U. “An analysis of non-isolated DC-DC converter topologies with energy transfer media”, Energies, 12(8): 1-19, (2019). DOI: https://doi.org/10.3390/en12081468
  • [8] Abbas, F. A., Abdul-Jabbar, T. A., Obed, A. A., Kersten, A., Kuder, M., Weyh, T. “A comprehensive review and analytical comparison of non-isolated DC-DC converters for fuel cell applications”, Energies, 16(8): 1-34, (2023). DOI: https://doi.org/10.3390/en16083493
  • [9] Sutikno, T., Aprilianto, R. A., Purnama, H. S. “Application of non-isolated bidirectional DC-DC converters for renewable and sustainable energy systems: a review”, Clean Energy, 7(2): 293-311, (2023). DOI: https://doi.org/10.1093/ce/zkac070
  • [10] Supriya, J., Rajashekar, J. S. “A comprehensive review of various isolated DC-DC converter topologies associated with photovoltaic applications”, Recent Advances in Electrical & Electronic Engineering, 15(8): 595-606, (2022). DOI: https://doi.org/10.2174/2352096515666220707115544
  • [11] Meshael, H., Elkhateb, A., Best, R. “Topologies and design characteristics of isolated high step-up DC-DC converters for photovoltaic systems”, Electronics, 12(18): 1-42, (2023). DOI: https://doi.org/10.3390/electronics12183913
  • [12] Murali, D., Shruthi, K. “A non-isolated modified Zeta converter-fed DC motor under load condition”, Brazilian Archives of Biology and Technology, 67(1): 1-12, (2024). DOI: https://doi.org/10.1590/1678-4324-2024230420
  • [13] Gupta, P. P., Kishore, G. I., Tripathi, R. K. “Non-isolated high step-up in voltage DC-DC converter topology for renewable applications”, Journal of Circuits, Systems and Computers, 30(6): 1-27, (2021). DOI: https://doi.org/10.1142/S0218126621500936
  • [14] Niu, J., Tang, Y. “A family of single-switch wide-gain converters with low voltage stress”, Energy Reports, 9(10): 1032-1041, (2023). DOI: https://doi.org/10.1016/j.egyr.2023.05.199
  • [15] Zaid, M., Khan, S., Siddique, M. D., Sarwar, A., Ahmad, J., Sarwer, Z., Iqbal, A. “A transformerless high gain dc–dc boost converter with reduced voltage stress”, International Transactions on Electrical Energy Systems, 31(5): 1-17, (2021). DOI: https://doi.org/10.1002/2050-7038.12877
  • [16] Alhurayyis, I., Elkhateb, A., Morrow, D. J. “Isolated and non-isolated DC-to-DC converters for medium voltage DC networks: A review”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6): 7486-7500, (2021). DOI: https://doi.org/10.1109/JESTPE.2020.3028057
  • [17] Gnanavadivel, J., Jayanthi, K., Nivethini, M., Thejhaswiniy, S. J., Ilakkiya, R. “Implementation of non-isolated high-gain DC-DC converter for electric vehicle application”, International Journal of Electronics, 111(11): 1980-2001, (2024). DOI: https://doi.org/10.1080/00207217.2023.2248656
  • [18] Sugali, H., Sathyan, S., Merlin Mary, N. J.. “Design and analysis of quasi-resonant high-gain impedance source DC-DC converter for DC microgrid”, International Journal of Electronics, 111(12): 2159-2179, (2024), DOI: https://doi.org/10.1080/00207217.2023.2248667
  • [19] Saravanan, S., Babu, N. R. “A modified high step-up non-isolated DC-DC converter for PV application”, Journal of Applied Research and Technology, 15(3): 242-249, (2017). DOI: https://doi.org/10.1016/j.jart.2016.12.008
  • [20] Premkumar, M., Subramaniam, U., Alhelou, H. H., Siano, P. “Design and development of non-isolated modified SEPIC DC-DC converter for high-step-up applications: Investigation and hardware implementation”, Energies, 13(15): 1-27, (2020). DOI: https://doi.org/10.3390/en13153960
  • [21] Zhu, B., Liu, J., Liu, Y., Zhi, S., Zhao, Y. “A high-reliability SEPIC converter with reconfigurable voltage conversion gain”, Energy Reports, 9(7): 523-531, (2023). DOI: https://doi.org/10.1016/j.egyr.2023.04.160
  • [22] Gules, R., dos Santos, W. M., dos Reis, F. A., Romaneli, E. F. R., Badin, A. A. “A modified SEPIC converter with high static gain for renewable applications”, IEEE Transactions on Power Electronics, 29(11): 5860-5871, (2014). DOI: https://doi.org/10.1109/TPEL.2013.2296053
  • [23] Jyothi, B., Bhavana, P., Rao, B. T., Pushkarna, M., Kitmo, Djidimbele, R. “Implementation of modified SEPIC converter for renewable energy built DC microgrids”, International Journal of Photoenergy, 2023: 1-13, (2023). DOI: https://doi.org/10.1155/2023/2620367
  • [24] Gao, S., Wang, Y., Guan, Y., Xu, D. “A high-frequency high voltage gain modified SEPIC with integrated inductors”, IEEE Transactions on Industry Applications, 55(6): 7481-7490, (2019). DOI: https://doi.org/10.1109/TIA.2019.2909498
  • [25] Haider, Z., Ulasyar, A., Khattak, A., Zad, H. S., Mohammad, A., Alahmadi, A. A., Ullah, N. “Development and analysis of a novel high-gain CUK converter using voltage-multiplier units”, Electronics, 11(17): 1-16, (2022). DOI: https://doi.org/10.3390/electronics11172766
  • [26] Joseph, K. D., Daniel, A. E., Unnikrishnan, A. “Modified interleaved Cuk converter with improved voltage gain and reduced THD”, Arabian Journal for Science and Engineering, 48(5): 6137-6147, (2023). DOI: https://doi.org/10.1007/s13369-022-07251-0
  • [27] Shayeghi, H., Mohajery, R., Hosseinpour, M., Sedaghati, F., Bizon, N. “A transformer-less high voltage gain DC-DC converter based on Cuk converter and voltage-lift technique”, Journal of Energy Management and Technology, 8(1): 23-34, (2024). DOI: https://doi.org/10.22109/jemt.2023.416222.1470
  • [28] Chen, H., Lin, W. –m., Liu, W. R., He, W. “Tapped-inductor bi-directional Cuk converter with high step-up/down conversion ratio and its optimum design”, Scientific Reports, 12: 1-16, (2022). DOI: https://doi.org/10.1038/s41598-022-17801-z
  • [29] Mahafzah, K. A., Al-Shetwi, A. Q., Hannan, M. A., Babu, T. S., Nwulu, N. “A new Cuk-based DC-DC converter with improved efficiency and lower rated voltage of coupling capacitor”, Sustainability, 15(11): 1-17, (2023). DOI: https://doi.org/10.3390/su15118515
  • [30] Murali, D. “A transformerless boost-modified Cuk combined single-switch DC-DC converter topology with enhanced voltage gain”, Brazilian Archives of Biology and Technology, 66(3/4): 1-20, (2023). DOI: https://doi.org/10.1590/1678-4324-2023220101
  • [31] Mahafzah, K. A., Obeidat, M. A., Mansour, A., Sanseverino, E. R., Zizzo, G. “A new smart grid hybrid DC-DC converter with improved voltage gain and synchronized multiple outputs”, Applied Sciences, 14(6): 1-18, (2024). DOI: https://doi.org/10.3390/app14062274
  • [32] Ranganathan, S., Mohan, A. N. D. “Formulation and analysis of single switch high gain hybrid DC to DC converter for high power applications”, Electronics, 10(19): 1-14, (2021). DOI: https://doi.org/10.3390/electronics10192445
  • [33] Karthikeyan, M., Elavarasu, R., Ramesh, P., Bharatiraja, C., Sanjeevikumar, P., Mihet-Popa, L., Mitolo, M. “A hybridization of Cuk and Boost converter using single switch with higher voltage gain capability”, Energies, 13(9): 1-24, (2020). DOI: https://doi.org/10.3390/en13092312
  • [34] Li, H., Cheng, L., Sun, X., Li, C. “High step-up combined boost-Cuk converter with switched-inductor”, IET Power Electronics, 15(15): 1664-1674, (2022). DOI: https://doi.org/10.1049/pel2.12335
  • [35] Priyadarshi, N., Bhaskar, M. S., Padmanaban, S., Blaabjerg, F., Azam F. “New CUK-SEPIC converter based photovoltaic power system with hybrid GSA-PSO algorithm employing MPPT for water pumping applications”, IET Power Electronics, 13(13): 2824-2830, (2020). DOI: https://doi.org/10.1049/iet-pel.2019.1154
  • [36] Murali, D. “Closed-loop implementation of a non-isolated high step-up integrated SEPIC-CUK DC-DC converter structure with single switch”, Brazilian Archives of Biology and Technology, 67(2): 1-15, (2024). DOI: https://doi.org/10.1590/1678-4324-2024230787

A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress

Year 2025, Early View, 1 - 1

Abstract

The renewable energy based electrical power generation has the natural characteristics such as unpredictability and intermittency. The challenging task is continuous power supply that is obtained by hybrid system consisting of two or more resources. This research article proposes a transformer-less integrated DC-DC conversion scheme, composed of parallel-connected modified Cuk and conventional Single-Ended-Primary-Inductor Converter (SEPIC) topologies, suitable for application in power generation using renewable sources. The suggested integrated converter topology is operated in such condition that inductor current is continuous, and it employs lower passive component-count and provides a higher voltage conversion ratio than the traditional non-isolated configurations. The power semiconductor devices experience low voltage stress. The steady state performance of the proposed hybrid topology along with the mathematical derivation of voltage gain is explored. A prototype model of the converter is implemented to validate the performance of the hybrid configuration. The output voltage and other performance parameters of the hardware model are compared with that of the simulink setup.

References

  • [1] Khan, Y., Liu, F. “Consumption of energy from conventional sources a challenge to the green environment: Evaluating the role of energy imports, and energy intensity in Australia”, Environmental Science and Pollution Research, 30: 22712-22727, (2023). DOI: https://doi.org/10.1007/s11356-022-23750-x
  • [2] Kumar, R., Ojha, K., Ahmadi, M. H., Raj, R., Aliehyaei, M., Ahmadi, A., Nabipour, N. “A review status on alternative arrangements of power generation energy resources and reserve in India”, International Journal of Low-Carbon Technologies, 15(2): 224-240, (2020). DOI: https://orcid.org/0000-0002-0097-2534
  • [3] Erdiwansyah, Mahidin, Husin, H., Nasaruddin, Zaki, M., Muhibbuddin. “A critical review of the integration of renewable energy sources with various technologies”, Protection and Control of Modern Power Systems, 6(3): 1-18, (2021). DOI: https://doi.org/10.1186/s41601-021-00181-3
  • [4] Laveyne, J. I., Bozalakov, D., Eetvelde, G. V., Vandevelde, L. “Impact of solar panel orientation on the integration of solar energy in low-voltage distribution grids”, International Journal of Photoenergy, 2020: 1-13, (2020). DOI: https://doi.org/10.1155/2020/2412780
  • [5] Sutikno, T., Purnama, H. S., Widodo, N. S., Sanjeevikumar, P., Sahid, M. R. “A review on non-isolated low-power DC-DC converter topologies with high output gain for solar photovoltaic system applications”, Clean Energy, 6(4): 557-572, (2022). DOI: https://doi.org/ 10.1093/ce/zkac037
  • [6] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Ramani Kannan, Ibrahim, O. “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications”, Ain Shams Engineering Journal, 12(4): 3747-3763, (2021). DOI: https://doi.org/10.1016/j.asej.2021.03.022
  • [7] Shin, S. U. “An analysis of non-isolated DC-DC converter topologies with energy transfer media”, Energies, 12(8): 1-19, (2019). DOI: https://doi.org/10.3390/en12081468
  • [8] Abbas, F. A., Abdul-Jabbar, T. A., Obed, A. A., Kersten, A., Kuder, M., Weyh, T. “A comprehensive review and analytical comparison of non-isolated DC-DC converters for fuel cell applications”, Energies, 16(8): 1-34, (2023). DOI: https://doi.org/10.3390/en16083493
  • [9] Sutikno, T., Aprilianto, R. A., Purnama, H. S. “Application of non-isolated bidirectional DC-DC converters for renewable and sustainable energy systems: a review”, Clean Energy, 7(2): 293-311, (2023). DOI: https://doi.org/10.1093/ce/zkac070
  • [10] Supriya, J., Rajashekar, J. S. “A comprehensive review of various isolated DC-DC converter topologies associated with photovoltaic applications”, Recent Advances in Electrical & Electronic Engineering, 15(8): 595-606, (2022). DOI: https://doi.org/10.2174/2352096515666220707115544
  • [11] Meshael, H., Elkhateb, A., Best, R. “Topologies and design characteristics of isolated high step-up DC-DC converters for photovoltaic systems”, Electronics, 12(18): 1-42, (2023). DOI: https://doi.org/10.3390/electronics12183913
  • [12] Murali, D., Shruthi, K. “A non-isolated modified Zeta converter-fed DC motor under load condition”, Brazilian Archives of Biology and Technology, 67(1): 1-12, (2024). DOI: https://doi.org/10.1590/1678-4324-2024230420
  • [13] Gupta, P. P., Kishore, G. I., Tripathi, R. K. “Non-isolated high step-up in voltage DC-DC converter topology for renewable applications”, Journal of Circuits, Systems and Computers, 30(6): 1-27, (2021). DOI: https://doi.org/10.1142/S0218126621500936
  • [14] Niu, J., Tang, Y. “A family of single-switch wide-gain converters with low voltage stress”, Energy Reports, 9(10): 1032-1041, (2023). DOI: https://doi.org/10.1016/j.egyr.2023.05.199
  • [15] Zaid, M., Khan, S., Siddique, M. D., Sarwar, A., Ahmad, J., Sarwer, Z., Iqbal, A. “A transformerless high gain dc–dc boost converter with reduced voltage stress”, International Transactions on Electrical Energy Systems, 31(5): 1-17, (2021). DOI: https://doi.org/10.1002/2050-7038.12877
  • [16] Alhurayyis, I., Elkhateb, A., Morrow, D. J. “Isolated and non-isolated DC-to-DC converters for medium voltage DC networks: A review”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6): 7486-7500, (2021). DOI: https://doi.org/10.1109/JESTPE.2020.3028057
  • [17] Gnanavadivel, J., Jayanthi, K., Nivethini, M., Thejhaswiniy, S. J., Ilakkiya, R. “Implementation of non-isolated high-gain DC-DC converter for electric vehicle application”, International Journal of Electronics, 111(11): 1980-2001, (2024). DOI: https://doi.org/10.1080/00207217.2023.2248656
  • [18] Sugali, H., Sathyan, S., Merlin Mary, N. J.. “Design and analysis of quasi-resonant high-gain impedance source DC-DC converter for DC microgrid”, International Journal of Electronics, 111(12): 2159-2179, (2024), DOI: https://doi.org/10.1080/00207217.2023.2248667
  • [19] Saravanan, S., Babu, N. R. “A modified high step-up non-isolated DC-DC converter for PV application”, Journal of Applied Research and Technology, 15(3): 242-249, (2017). DOI: https://doi.org/10.1016/j.jart.2016.12.008
  • [20] Premkumar, M., Subramaniam, U., Alhelou, H. H., Siano, P. “Design and development of non-isolated modified SEPIC DC-DC converter for high-step-up applications: Investigation and hardware implementation”, Energies, 13(15): 1-27, (2020). DOI: https://doi.org/10.3390/en13153960
  • [21] Zhu, B., Liu, J., Liu, Y., Zhi, S., Zhao, Y. “A high-reliability SEPIC converter with reconfigurable voltage conversion gain”, Energy Reports, 9(7): 523-531, (2023). DOI: https://doi.org/10.1016/j.egyr.2023.04.160
  • [22] Gules, R., dos Santos, W. M., dos Reis, F. A., Romaneli, E. F. R., Badin, A. A. “A modified SEPIC converter with high static gain for renewable applications”, IEEE Transactions on Power Electronics, 29(11): 5860-5871, (2014). DOI: https://doi.org/10.1109/TPEL.2013.2296053
  • [23] Jyothi, B., Bhavana, P., Rao, B. T., Pushkarna, M., Kitmo, Djidimbele, R. “Implementation of modified SEPIC converter for renewable energy built DC microgrids”, International Journal of Photoenergy, 2023: 1-13, (2023). DOI: https://doi.org/10.1155/2023/2620367
  • [24] Gao, S., Wang, Y., Guan, Y., Xu, D. “A high-frequency high voltage gain modified SEPIC with integrated inductors”, IEEE Transactions on Industry Applications, 55(6): 7481-7490, (2019). DOI: https://doi.org/10.1109/TIA.2019.2909498
  • [25] Haider, Z., Ulasyar, A., Khattak, A., Zad, H. S., Mohammad, A., Alahmadi, A. A., Ullah, N. “Development and analysis of a novel high-gain CUK converter using voltage-multiplier units”, Electronics, 11(17): 1-16, (2022). DOI: https://doi.org/10.3390/electronics11172766
  • [26] Joseph, K. D., Daniel, A. E., Unnikrishnan, A. “Modified interleaved Cuk converter with improved voltage gain and reduced THD”, Arabian Journal for Science and Engineering, 48(5): 6137-6147, (2023). DOI: https://doi.org/10.1007/s13369-022-07251-0
  • [27] Shayeghi, H., Mohajery, R., Hosseinpour, M., Sedaghati, F., Bizon, N. “A transformer-less high voltage gain DC-DC converter based on Cuk converter and voltage-lift technique”, Journal of Energy Management and Technology, 8(1): 23-34, (2024). DOI: https://doi.org/10.22109/jemt.2023.416222.1470
  • [28] Chen, H., Lin, W. –m., Liu, W. R., He, W. “Tapped-inductor bi-directional Cuk converter with high step-up/down conversion ratio and its optimum design”, Scientific Reports, 12: 1-16, (2022). DOI: https://doi.org/10.1038/s41598-022-17801-z
  • [29] Mahafzah, K. A., Al-Shetwi, A. Q., Hannan, M. A., Babu, T. S., Nwulu, N. “A new Cuk-based DC-DC converter with improved efficiency and lower rated voltage of coupling capacitor”, Sustainability, 15(11): 1-17, (2023). DOI: https://doi.org/10.3390/su15118515
  • [30] Murali, D. “A transformerless boost-modified Cuk combined single-switch DC-DC converter topology with enhanced voltage gain”, Brazilian Archives of Biology and Technology, 66(3/4): 1-20, (2023). DOI: https://doi.org/10.1590/1678-4324-2023220101
  • [31] Mahafzah, K. A., Obeidat, M. A., Mansour, A., Sanseverino, E. R., Zizzo, G. “A new smart grid hybrid DC-DC converter with improved voltage gain and synchronized multiple outputs”, Applied Sciences, 14(6): 1-18, (2024). DOI: https://doi.org/10.3390/app14062274
  • [32] Ranganathan, S., Mohan, A. N. D. “Formulation and analysis of single switch high gain hybrid DC to DC converter for high power applications”, Electronics, 10(19): 1-14, (2021). DOI: https://doi.org/10.3390/electronics10192445
  • [33] Karthikeyan, M., Elavarasu, R., Ramesh, P., Bharatiraja, C., Sanjeevikumar, P., Mihet-Popa, L., Mitolo, M. “A hybridization of Cuk and Boost converter using single switch with higher voltage gain capability”, Energies, 13(9): 1-24, (2020). DOI: https://doi.org/10.3390/en13092312
  • [34] Li, H., Cheng, L., Sun, X., Li, C. “High step-up combined boost-Cuk converter with switched-inductor”, IET Power Electronics, 15(15): 1664-1674, (2022). DOI: https://doi.org/10.1049/pel2.12335
  • [35] Priyadarshi, N., Bhaskar, M. S., Padmanaban, S., Blaabjerg, F., Azam F. “New CUK-SEPIC converter based photovoltaic power system with hybrid GSA-PSO algorithm employing MPPT for water pumping applications”, IET Power Electronics, 13(13): 2824-2830, (2020). DOI: https://doi.org/10.1049/iet-pel.2019.1154
  • [36] Murali, D. “Closed-loop implementation of a non-isolated high step-up integrated SEPIC-CUK DC-DC converter structure with single switch”, Brazilian Archives of Biology and Technology, 67(2): 1-15, (2024). DOI: https://doi.org/10.1590/1678-4324-2024230787
There are 36 citations in total.

Details

Primary Language English
Subjects Electrical Circuits and Systems
Journal Section Research Article
Authors

Murali Duraisamy 0000-0002-6890-1687

Early Pub Date March 9, 2025
Publication Date
Submission Date September 12, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025 Early View

Cite

APA Duraisamy, M. (2025). A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress. Gazi University Journal of Science1-1.
AMA Duraisamy M. A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress. Gazi University Journal of Science. Published online March 1, 2025:1-1.
Chicago Duraisamy, Murali. “A Hybrid Non-Isolated DC-DC Power Electronic Conversion Topology With High Step-up Gain and Low Switch Voltage Stress”. Gazi University Journal of Science, March (March 2025), 1-1.
EndNote Duraisamy M (March 1, 2025) A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress. Gazi University Journal of Science 1–1.
IEEE M. Duraisamy, “A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress”, Gazi University Journal of Science, pp. 1–1, March 2025.
ISNAD Duraisamy, Murali. “A Hybrid Non-Isolated DC-DC Power Electronic Conversion Topology With High Step-up Gain and Low Switch Voltage Stress”. Gazi University Journal of Science. March 2025. 1-1.
JAMA Duraisamy M. A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress. Gazi University Journal of Science. 2025;:1–1.
MLA Duraisamy, Murali. “A Hybrid Non-Isolated DC-DC Power Electronic Conversion Topology With High Step-up Gain and Low Switch Voltage Stress”. Gazi University Journal of Science, 2025, pp. 1-1.
Vancouver Duraisamy M. A Hybrid Non-isolated DC-DC Power Electronic Conversion Topology with High Step-up Gain and Low Switch Voltage Stress. Gazi University Journal of Science. 2025:1-.