Research Article
BibTex RIS Cite

Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1716857

Abstract

Crimes such as terrorism, organized crime, cybercrime, smuggling, money laundering, and trafficking represent critical challenges to global security, often involving complex transnational networks. Traditional clustering techniques used to analyze offender data typically focus on either individuals or crime types in isolation. In this study, we propose a biclustering-based approach to simultaneously group offenders and crime categories, enabling the identification of hidden patterns and associations. Using the Bimax algorithm implemented in R, we analyzed a dataset consisting of offenders involved in similar criminal activities. The method facilitates the creation of crime maps that reveal clusters sharing common attributes. Results demonstrate that offenders often cluster according to nationality, leading to the discovery of distinct crime routes linked to specific national groups. These findings highlight the value of biclustering in uncovering latent structures in complex criminal networks and offer a novel methodological perspective for crime analysis. The approach provides actionable insights for law enforcement agencies by supporting targeted interventions based on shared behavioral patterns and demographic indicators. This work not only showcases the effectiveness of biclustering in criminological data analysis but also lays a foundation for future research integrating larger and more diverse datasets or exploring alternative algorithms to enhance predictive accuracy in applied security analytics.

References

  • [1] Arslan, R., Örkcü, H.H. and Altunkaynak, B. “Clustering of criminals according to the types of material caught in smuggling: Biclustering method”, International Journal of Economics and Administrative Studies, 883–896, (2018). DOI: https://doi.org/10.18092/ulikidince.348119
  • [2] Gürer, C., “Suç analizi: çağdaş polisin vazgeçilmez silahı”, Polis Dergisi, 10(41): 23–29, (2004).
  • [3] Dağ, H., “Suçla mücadelede suç analizlerinin yeri ve önemi”, Polis Dergisi, 8(30): 39–40, (2002).
  • [4] Giray, S., “Investigation of convict data by two stage cluster analysis”, EKOIST Journal of Econometrics and Statistics, 25: 1–31, (2016).
  • [5] Sea, J., Kim, K. and Youngs, D., “Behavioural profiles and offender characteristics across 111 Korean sexual assaults”, Journal of Investigative Psychology and Offender Profiling, 13(1): 3–21, (2016). DOI: https://doi.org/10.1002/jip.1430
  • [6] Reale, K., Beauregard, E. and Martineau, M., “Sadism in sexual homicide offenders: Identifying distinct groups”, Journal of Criminal Psychology, 7(2): 120–133, (2017). DOI: https://doi.org/10.1108/JCP-11-2016-0042
  • [7] Tayal, D.K., Jain, A., Arora, S., Agarwal, S., Gupta, T. and Tyagi, N., "Crime detection and criminal identification in India using data mining techniques", AI & Society, 30: 117–127, (2015). DOI: https://doi.org/10.1007/s00146-014-0539-6
  • [8] Kim, K. and Kim, Y.A., "A Machine Learning Approach to Analyzing Crime Concentration: The Case of New York City", Justice Quarterly, 1-21, (2024). DOI: https://doi.org/10.1080/07418825.2024.2401938
  • [9] Forradellas, R.F.R., Náñez Alonso, S.L., Jorge-Vazquez, J. and Rodriguez, M.L., "Applied Machine Learning in Social Sciences: Neural Networks and Crime Prediction", Social Sciences, 10(4): 119, (2021). DOI: https://doi.org/10.3390/socsci10010004
  • [10] Melnykov, V. and Zhu, X., "Studying crime trends in the USA over the years 2000-2012", Advances in Data Analysis and Classification, 13: 325–341, (2019). DOI: https://doi.org/10.1007/s11634-018-0326-1
  • [11] Berrittella, M., "Income mobility and crime: a hierarchical cluster analysis on principal components for 27 OECD countries", International Journal of Social Economics, 52(2): 287-305, (2025). DOI: https://doi.org/10.1108/IJSE-07-2023-0520
  • [12] Erdal, H., Kurtay, K.G. and Dağıstanlı, H.A., "Suggesting A Stochastic Measurement Tool for Determining Crime and Safety Indexes: Evidence from Turkey", Gazi University Journal of Science, 37(1): 339-355, (2024). DOI: https://doi.org/10.35378/gujs.1110735
  • [13] van Dijk, J., Nieuwbeerta, P. and Joudo Larsen, J., “Global crime patterns: An analysis of survey data from 166 countries around the world, 2006–2019”, Journal of Quantitative Criminology, 38: 793–827, (2022). DOI: https://doi.org/10.1007/s10940-021-09501-0
  • [14] Piza, E.L., Mohler, G.O., Connealy, N.T., et al., “Space-time association between gunshot detection alerts, calls for service, and police enforcement in Chicago: Differences across citizen race and incident type”, Journal of Quantitative Criminology, 41: 53–74, (2025). DOI: https://doi.org/10.1007/s10940-024-09589-0
  • [15] Madeira, S.C. and Oliveira, A.L., “Biclustering algorithms for biological data analysis: A survey”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1): 24–45, (2004). DOI: https://doi.org/10.1109/TCBB.2004.2
  • [16] Hartigan, J.A., “Direct clustering of a data matrix”, Journal of the American Statistical Association, 67(337): 123–129, (1972). DOI: https://doi.org/10.1080/01621459.1972.10481214
  • [17] Cheng, Y. and Church, G.M., “Biclustering of expression data”, Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, 1: 93–103, (2000).
  • [18] Lazzeroni, L. and Owen, A., “Plaid models for gene expression data”, Statistica Sinica, 12(1): 61–86, (2002).
  • [19] Bergmann, S., Ihmels, J. and Barkai, N., “Iterative signature algorithm for the analysis of large-scale gene expression data”, Physical Review E, 67: 031902, (2003). DOI: https://doi.org/10.1103/PhysRevE.67.031902
  • [20] Prelic, A., Bleuler, S., Zimmermann, P., et al., “A systematic comparison and evaluation of biclustering methods for gene expression data”, Bioinformatics, 22: 1122–1129, (2006). DOI: https://doi.org/10.1093/bioinformatics/btl060
  • [21] Wang, B., Miao, Y., Zhao, H., Jing, J. and Chen, Y., “A biclustering-based method for market segmentation using customer pain points”, Engineering Applications of Artificial Intelligence, 47: 101–109, (2016). DOI: https://doi.org/10.1016/j.engappai.2015.06.005
  • [22] Raponi, V., Martella, F. and Maruotti, A., “A biclustering approach to university performances: An Italian case study”, Journal of Applied Statistics, 43(1): 31–45, (2016). DOI: https://doi.org/10.1080/02664763.2015.1009005
  • [23] Veroneze, R., Banerjee, A., Fernando, J. and Zubena, V., “Enumerating all maximal biclusters in numerical datasets”, Information Sciences, 379: 288–309, (2017). DOI: https://doi.org/10.1016/j.ins.2016.10.029
  • [24] Kocatürk, A. and Altunkaynak, B., “Comparison and application of biclustering algorithms for gene expression data”, Turkiye Klinikleri Journal of Biostatistics, 10(2): 137–152, (2018). DOI: https://doi.org/10.5336/biostatic.2018-60153
  • [25] United Nations Office on Drugs and Crime (UNODC), “Cannabis statistics”, In: World Drug Report 2016, Available at: https://www.unodc.org/wdr2016/ (accessed 12 January 2025).
  • [26] European Monitoring Centre for Drugs and Drug Addiction, “European Drug Report (EUROPOL)”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Uluslar-Arasi-Yayinlar/EUROPEAN-DRUG-REPORT-2019-INGILIZCE.pdf (accessed 15 February 2025).
  • [27] European Union Drugs Agency, “European Drug Report”, Available at: https://www.euda.europa.eu/publications/edr/trends-developments/2019_en (accessed 25 January 2025).
  • [28] Chayes, S., “Thieves of state: Why corruption threatens global security”, Journal of Strategic Security, 9(2): 129–132, (2015). DOI: https://doi.org/10.5038/1944-0472.9.2.1531
  • [29] T.C. İçişleri Bakanlığı Emniyet Genel Müdürlüğü Narkotik Suçlarla Mücadele Başkanlığı, “Türkiye Uyuşturucu Raporu”, Available at: https://www.narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Ulusal% 20Yay%C4%B1nlar/2023_TURKIYE_UYUSTURUCU_RAPORU.pdf (accessed 10 February 2025).
  • [30] T.C. İçişleri Bakanlığı Emniyet Genel Müdürlüğü Narkotik Suçlarla Mücadele Başkanlığı, “Türkiye Uyuşturucu Raporu”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Ulusal% 20Yay%C4%B1nlar/2019-TURKIYE-UYUSTURUCU-RAPORU.pdf (accessed 10 February 2025).
  • [31] European Monitoring Centre for Drugs and Drug Addiction, “European Drug Report (EUROPOL)”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Uluslar-Arasi-Yayinlar/EUROPEAN-DRUG-REPORT-2021-INGILIZCE.pdf (accessed 15 February 2025).

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1716857

Abstract

References

  • [1] Arslan, R., Örkcü, H.H. and Altunkaynak, B. “Clustering of criminals according to the types of material caught in smuggling: Biclustering method”, International Journal of Economics and Administrative Studies, 883–896, (2018). DOI: https://doi.org/10.18092/ulikidince.348119
  • [2] Gürer, C., “Suç analizi: çağdaş polisin vazgeçilmez silahı”, Polis Dergisi, 10(41): 23–29, (2004).
  • [3] Dağ, H., “Suçla mücadelede suç analizlerinin yeri ve önemi”, Polis Dergisi, 8(30): 39–40, (2002).
  • [4] Giray, S., “Investigation of convict data by two stage cluster analysis”, EKOIST Journal of Econometrics and Statistics, 25: 1–31, (2016).
  • [5] Sea, J., Kim, K. and Youngs, D., “Behavioural profiles and offender characteristics across 111 Korean sexual assaults”, Journal of Investigative Psychology and Offender Profiling, 13(1): 3–21, (2016). DOI: https://doi.org/10.1002/jip.1430
  • [6] Reale, K., Beauregard, E. and Martineau, M., “Sadism in sexual homicide offenders: Identifying distinct groups”, Journal of Criminal Psychology, 7(2): 120–133, (2017). DOI: https://doi.org/10.1108/JCP-11-2016-0042
  • [7] Tayal, D.K., Jain, A., Arora, S., Agarwal, S., Gupta, T. and Tyagi, N., "Crime detection and criminal identification in India using data mining techniques", AI & Society, 30: 117–127, (2015). DOI: https://doi.org/10.1007/s00146-014-0539-6
  • [8] Kim, K. and Kim, Y.A., "A Machine Learning Approach to Analyzing Crime Concentration: The Case of New York City", Justice Quarterly, 1-21, (2024). DOI: https://doi.org/10.1080/07418825.2024.2401938
  • [9] Forradellas, R.F.R., Náñez Alonso, S.L., Jorge-Vazquez, J. and Rodriguez, M.L., "Applied Machine Learning in Social Sciences: Neural Networks and Crime Prediction", Social Sciences, 10(4): 119, (2021). DOI: https://doi.org/10.3390/socsci10010004
  • [10] Melnykov, V. and Zhu, X., "Studying crime trends in the USA over the years 2000-2012", Advances in Data Analysis and Classification, 13: 325–341, (2019). DOI: https://doi.org/10.1007/s11634-018-0326-1
  • [11] Berrittella, M., "Income mobility and crime: a hierarchical cluster analysis on principal components for 27 OECD countries", International Journal of Social Economics, 52(2): 287-305, (2025). DOI: https://doi.org/10.1108/IJSE-07-2023-0520
  • [12] Erdal, H., Kurtay, K.G. and Dağıstanlı, H.A., "Suggesting A Stochastic Measurement Tool for Determining Crime and Safety Indexes: Evidence from Turkey", Gazi University Journal of Science, 37(1): 339-355, (2024). DOI: https://doi.org/10.35378/gujs.1110735
  • [13] van Dijk, J., Nieuwbeerta, P. and Joudo Larsen, J., “Global crime patterns: An analysis of survey data from 166 countries around the world, 2006–2019”, Journal of Quantitative Criminology, 38: 793–827, (2022). DOI: https://doi.org/10.1007/s10940-021-09501-0
  • [14] Piza, E.L., Mohler, G.O., Connealy, N.T., et al., “Space-time association between gunshot detection alerts, calls for service, and police enforcement in Chicago: Differences across citizen race and incident type”, Journal of Quantitative Criminology, 41: 53–74, (2025). DOI: https://doi.org/10.1007/s10940-024-09589-0
  • [15] Madeira, S.C. and Oliveira, A.L., “Biclustering algorithms for biological data analysis: A survey”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1): 24–45, (2004). DOI: https://doi.org/10.1109/TCBB.2004.2
  • [16] Hartigan, J.A., “Direct clustering of a data matrix”, Journal of the American Statistical Association, 67(337): 123–129, (1972). DOI: https://doi.org/10.1080/01621459.1972.10481214
  • [17] Cheng, Y. and Church, G.M., “Biclustering of expression data”, Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, 1: 93–103, (2000).
  • [18] Lazzeroni, L. and Owen, A., “Plaid models for gene expression data”, Statistica Sinica, 12(1): 61–86, (2002).
  • [19] Bergmann, S., Ihmels, J. and Barkai, N., “Iterative signature algorithm for the analysis of large-scale gene expression data”, Physical Review E, 67: 031902, (2003). DOI: https://doi.org/10.1103/PhysRevE.67.031902
  • [20] Prelic, A., Bleuler, S., Zimmermann, P., et al., “A systematic comparison and evaluation of biclustering methods for gene expression data”, Bioinformatics, 22: 1122–1129, (2006). DOI: https://doi.org/10.1093/bioinformatics/btl060
  • [21] Wang, B., Miao, Y., Zhao, H., Jing, J. and Chen, Y., “A biclustering-based method for market segmentation using customer pain points”, Engineering Applications of Artificial Intelligence, 47: 101–109, (2016). DOI: https://doi.org/10.1016/j.engappai.2015.06.005
  • [22] Raponi, V., Martella, F. and Maruotti, A., “A biclustering approach to university performances: An Italian case study”, Journal of Applied Statistics, 43(1): 31–45, (2016). DOI: https://doi.org/10.1080/02664763.2015.1009005
  • [23] Veroneze, R., Banerjee, A., Fernando, J. and Zubena, V., “Enumerating all maximal biclusters in numerical datasets”, Information Sciences, 379: 288–309, (2017). DOI: https://doi.org/10.1016/j.ins.2016.10.029
  • [24] Kocatürk, A. and Altunkaynak, B., “Comparison and application of biclustering algorithms for gene expression data”, Turkiye Klinikleri Journal of Biostatistics, 10(2): 137–152, (2018). DOI: https://doi.org/10.5336/biostatic.2018-60153
  • [25] United Nations Office on Drugs and Crime (UNODC), “Cannabis statistics”, In: World Drug Report 2016, Available at: https://www.unodc.org/wdr2016/ (accessed 12 January 2025).
  • [26] European Monitoring Centre for Drugs and Drug Addiction, “European Drug Report (EUROPOL)”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Uluslar-Arasi-Yayinlar/EUROPEAN-DRUG-REPORT-2019-INGILIZCE.pdf (accessed 15 February 2025).
  • [27] European Union Drugs Agency, “European Drug Report”, Available at: https://www.euda.europa.eu/publications/edr/trends-developments/2019_en (accessed 25 January 2025).
  • [28] Chayes, S., “Thieves of state: Why corruption threatens global security”, Journal of Strategic Security, 9(2): 129–132, (2015). DOI: https://doi.org/10.5038/1944-0472.9.2.1531
  • [29] T.C. İçişleri Bakanlığı Emniyet Genel Müdürlüğü Narkotik Suçlarla Mücadele Başkanlığı, “Türkiye Uyuşturucu Raporu”, Available at: https://www.narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Ulusal% 20Yay%C4%B1nlar/2023_TURKIYE_UYUSTURUCU_RAPORU.pdf (accessed 10 February 2025).
  • [30] T.C. İçişleri Bakanlığı Emniyet Genel Müdürlüğü Narkotik Suçlarla Mücadele Başkanlığı, “Türkiye Uyuşturucu Raporu”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Ulusal% 20Yay%C4%B1nlar/2019-TURKIYE-UYUSTURUCU-RAPORU.pdf (accessed 10 February 2025).
  • [31] European Monitoring Centre for Drugs and Drug Addiction, “European Drug Report (EUROPOL)”, Available at: https://narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUB%C4%B0M/Uluslar-Arasi-Yayinlar/EUROPEAN-DRUG-REPORT-2021-INGILIZCE.pdf (accessed 15 February 2025).
There are 31 citations in total.

Details

Primary Language English
Subjects Applied Statistics
Journal Section Research Article
Authors

Ramazan Arslan 0000-0003-0039-4620

H. Hasan Örkcü 0000-0002-2888-9580

Ahmet Kocatürk 0000-0003-2542-3264

Early Pub Date November 21, 2025
Publication Date November 29, 2025
Submission Date June 10, 2025
Acceptance Date October 5, 2025
Published in Issue Year 2025 Early View

Cite

APA Arslan, R., Örkcü, H. H., & Kocatürk, A. (2025). Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1716857
AMA Arslan R, Örkcü HH, Kocatürk A. Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders. Gazi University Journal of Science. Published online November 1, 2025:1-1. doi:10.35378/gujs.1716857
Chicago Arslan, Ramazan, H. Hasan Örkcü, and Ahmet Kocatürk. “Mapping Criminal Activities Using Biclustering Methods Based on Nationality Information of Offenders”. Gazi University Journal of Science, November (November 2025), 1-1. https://doi.org/10.35378/gujs.1716857.
EndNote Arslan R, Örkcü HH, Kocatürk A (November 1, 2025) Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders. Gazi University Journal of Science 1–1.
IEEE R. Arslan, H. H. Örkcü, and A. Kocatürk, “Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders”, Gazi University Journal of Science, pp. 1–1, November2025, doi: 10.35378/gujs.1716857.
ISNAD Arslan, Ramazan et al. “Mapping Criminal Activities Using Biclustering Methods Based on Nationality Information of Offenders”. Gazi University Journal of Science. November2025. 1-1. https://doi.org/10.35378/gujs.1716857.
JAMA Arslan R, Örkcü HH, Kocatürk A. Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders. Gazi University Journal of Science. 2025;:1–1.
MLA Arslan, Ramazan et al. “Mapping Criminal Activities Using Biclustering Methods Based on Nationality Information of Offenders”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1716857.
Vancouver Arslan R, Örkcü HH, Kocatürk A. Mapping Criminal Activities Using Biclustering Methods based on Nationality Information of Offenders. Gazi University Journal of Science. 2025:1-.