Research Article
BibTex RIS Cite
Year 2023, Volume: 36 Issue: 4, 1700 - 1720, 01.12.2023
https://doi.org/10.35378/gujs.998265

Abstract

References

  • [1] Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H.D., Tounsi, A., Gulia, R., “Machine learning models for predicting the compressive strength of concrete containing nano silica”, Computers and Concrete, 30(1): 33-42, (2022).
  • [2] Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A.J., Benrahou, K.H., Adda Bedia, E.A., Mahmoud, S.R., Tounsi, A., “Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation”, Computers and Concrete, 26(3): 213-226, (2020).
  • [3] Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L., Tounsi, A., “On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method”, Composite Structures, 257, 113150, (2021b).
  • [4] Huang, Y., Karami, B., Shahsavari, D., Tounsi, A., “Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels”, Archives of Civil and Mechanical Engineering, 21:139, (2021).
  • [5] Heidari, F., Taheri, K., Sheybani, M., Janghorban, M., Tounsi, A., “On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes”, Steel and Composite Structures, 38(5): 533-545, (2021).
  • [6] Timesli, A., “Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation”, Computers and Concrete, 26(1): 53-62, (2020).
  • [7] Russillo, A.F., Failla, G., Alotta, G., Sciarra, F.M., Barretta, R., “On the dynamics of nano-frames”, International Journal of Engineering Science, 160, 103433, (2021).
  • [8] Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic foundation”, Computers and Concrete, 25(6), 485-495, (2020).
  • [9] Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A., “Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory”, Engineering with Computers, (2021).
  • [10] Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H., Tounsi, A., “On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and pos yield regions”, Thin-Walled Structures, 179, 109631, (2022).
  • [11] Al-Furjan, M.S.H. Habibi, M., Ghabussie, A., Safarpour, H., Safarpour, M., Tounsi, A., “Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory”, Engineering Structures, 228, 111496, (2021).
  • [12] Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W., Tounsi, A., “Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems”, Engineering with Computers, (2020).
  • [13] Djilali, N., Bousahla, A.A., Kaci, A., Selim, M.M., Bourada, F., Tounsi, A.J., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., “Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT”, Steel and Composite Structures, 42, 779-789, (2022).
  • [14] Huang, Y., Karami, B., Shahsavari, D., Tounsi, A., “Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels”, Archives of Civil and Mechanical Engineering, 21: 139, (2021).
  • [15] Hajmohammad, M. H., Kolahchi, R., Zarei, M. S. and Nouri, A.H., “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory”, International Journal of Mechanical Sciences, 153-154: 391-401, (2019).
  • [16] Jalali, S.K. and Heshmati, M., “Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets”, Thin-walled structures, 100: 14-24, (2016).
  • [17] Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic foundation”, Computers and Concrete, 25(6): 485-495, (2020).
  • [18] Shokravi, M., “Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory”, Steel and Composite Structures, 23(6): 623-631, (2017).
  • [19] Shafiei, H. and Setoodeh, A.R., “Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation”, Steel and Composite Structures, 24(1): 65-77, (2017).
  • [20] Moradi-Dastjerdi, R. and Payganeh, G., “Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions”, Steel and Composite Structures, 24(3): 359-367, (2017).
  • [21] Shen, H.S., “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells”, Composite Structures, 93(8): 2096-2108, (2011).
  • [22] Kiani, Y., “Thermal Postbuckling of Temperature Dependent Sandwich Beams with Carbon Nanotube Reinforced Face Sheets”, Journal of Thermal Stresses, 39: 1098-1110, (2016).
  • [23] Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Sadeghi, S., Safarpour, H., Tounsi, A., Chen, G., “A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel”, Engineering with Computers, 38, 1679-1696 (2022).
  • [24] Iijima, S., “Helical microtubules of graphitic carbon”, Nature, 354: 56-58, (1991).
  • [25] Shen, H. S., “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments”, Composite Structures, 91(1): 9-19, (2009).
  • [26] Shen, H.S. and Zhang, C. L., “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates”, Materials and Design, 31: 3403-3411, (2010).
  • [27] Sofiyev, A.H., Turkaslan, B.E., Bayramov, R.P. and Salamci, M. U., “Analytical solution of stability of FG-CNTRC conical shells under external pressures”, Thin-walled Structures, 144: 106338, (2019).
  • [28] Mirzaei, M. and Kiani, Y., “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells”, Aerospace Science and Technology, 47: 42-53, (2015).
  • [29] Kolahchi, R., Safari, M. and Esmailpour, M., “Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium”, Composite Structures, 150: 255-265, (2016).
  • [30] Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M., “Earthquake induced dynamic detection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects”, Composite Structures, 187: 498-508, (2018).
  • [31] Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A., “On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams”, Steel and Composite Structures, 19: 1259-1277, (2015).
  • [32] Kaci, A., Tounsi, A., Bakhti, K., Adda Bedia, E.A., “Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates”, Steel and Composite Structures, 12(6): 491-504, (2012).
  • [33] Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., “Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment”, Thin-walled Structures, 170: 108549, (2022).
  • [34] Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U., “Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation”, Structures, 33: 2177-2189, (2021).
  • [35] Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., “Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations”, Steel and Composite Structures, 39(5): 631-643, (2021).
  • [36] Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R., “Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation”, Steel and Composite Structures, 38(1): 1-15, (2021).
  • [37] Wang, M., Li, Z.M. and Qiao, P., “Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets”, Composite Structures, 200: 799-809, (2018).
  • [38] Safaei, B., Dastjerdi, R.M., Qin, Z. and Chu, F., “Effect of thermal gradient load on thermoelastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations”, Composite Structures, 192: 28-37, (2018).
  • [39] Safaei, B., Dastjerdi, R.M., Qin, Z. and Chu, F., “Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads”, Composites Part B: Engineering, 161: 44-54, (2019).
  • [40] Mehar, K., Panda, S.K. and Mahapatra, T. R., “Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure”, European Journal of Mechanics; A/Solids, 65: 384-396, (2017).
  • [41] Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A.J. and Mahmoud, S.R., “Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle”, Steel and Composite Structures, 32(5): 595-610, (2019).
  • [42] Donnell, L. H., “Stability of Thin-Walled Tubes Under Torsion”, N.A.C.A. Technical Report No. 479, (1934).
  • [43] Timesli, A., Braikat, B., Jamal, M. and Damil, N., “Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression”, Comptes Rendus Mécanique, 345: 158-168, (2017).
  • [44] Asghar, S., Naeem, M.N., Hussain, M.,Taj, M. and Tounsi, A., “Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis”, Computers and Concrete, 25(2): 133-144, (2020).
  • [45] Timesli, A., “An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory”, SN Applied Sciences, 2: 407, (2020).
  • [46] Jam, J.E., and Kiani, Y., “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells”, Composite Structures, 125: 586-595, (2015).
  • [47] Kwon, H., Bradbury, C.R., and Leparoux, M., “Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite”, Advanced Engineering Materials, 13(4): 325-329, (2011).
  • [48] Shen, H.S., Wang, H., and Yang, D.Q., “Vibration of thermally postbuckled sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations”, International Journal of Mechanical Sciences, 124-125: 253-262, (2017)
  • [49] Reddy, J.N., “Mechanics of Laminated Composite Plates and Shells, Theory and Application”, CRC Press, Boca Raton, (2003).
  • [50] Brush, D., and Almroth, B., “Buckling of Bars, Plates and Shells”, in McGraw-Hill, New York, (1975).
  • [51] Kerr, A.D., “Elastic and viscoelastic foundation models”, Journal of Applied Mechanics, 31(3): 491-498, (1964).
  • [52] Kerr, A.D., “A study of a new foundation model”, Acta Mechanica, 1: 135-147, (1965).
  • [53] Timesli, A., “Analytical Modeling of Buckling Behavior of Porous FGM Cylindrical Shell Embedded within an Elastic Foundation”, Gazi University Journal of Science, 35(1): 148-165, (2022).
  • [54] Shen, H.S. and Xiang, Y., “Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments”, Engineering Structures, 56: 698-708, (2013).
  • [55] Manh, D.T., Anh, V.T.T., Nguyen, P.D. and Duc, N.D., “Nonlinear Post-Buckling of CNTs Reinforced Sandwich-Structured Composite Annular Spherical Shells”, International Journal of Structural Stability and Dynamics, 20(2): 2050018, (2020).

Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations

Year 2023, Volume: 36 Issue: 4, 1700 - 1720, 01.12.2023
https://doi.org/10.35378/gujs.998265

Abstract

Sandwich-Structured Composites (SSCs) are widely used in lightweight construction, especially in the aerospace sector, due to their high specific stiffness and strength. Therefore, it is important to develop their quality by using new techniques. Today, nanotechnologies offer new perspectives for the reinforcement of construction materials. This paper assumes that the reinforcement of the sandwich shell is performed by CNT reinforced face sheets with a uniform or Functionally Graded (FG) distribution of CNTs. The effective properties of the Carbon Nanotubes Reinforced Sandwich-Structured Composite (CNT-RSSC) shells are calculated using the rule of mixture. This study presents novel exact analytical formulas to predict the critical buckling load of the CNT-RSSC shells resting on elastic foundations based on Donnell cylindrical shell theory. These analytical formulas provide the most meaningful answer because we get an equation showing us exactly what happens with each variable. The effects of various parameters on the buckling stability of the RSSC shells are examined.

References

  • [1] Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H.D., Tounsi, A., Gulia, R., “Machine learning models for predicting the compressive strength of concrete containing nano silica”, Computers and Concrete, 30(1): 33-42, (2022).
  • [2] Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A.J., Benrahou, K.H., Adda Bedia, E.A., Mahmoud, S.R., Tounsi, A., “Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation”, Computers and Concrete, 26(3): 213-226, (2020).
  • [3] Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L., Tounsi, A., “On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method”, Composite Structures, 257, 113150, (2021b).
  • [4] Huang, Y., Karami, B., Shahsavari, D., Tounsi, A., “Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels”, Archives of Civil and Mechanical Engineering, 21:139, (2021).
  • [5] Heidari, F., Taheri, K., Sheybani, M., Janghorban, M., Tounsi, A., “On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes”, Steel and Composite Structures, 38(5): 533-545, (2021).
  • [6] Timesli, A., “Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation”, Computers and Concrete, 26(1): 53-62, (2020).
  • [7] Russillo, A.F., Failla, G., Alotta, G., Sciarra, F.M., Barretta, R., “On the dynamics of nano-frames”, International Journal of Engineering Science, 160, 103433, (2021).
  • [8] Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic foundation”, Computers and Concrete, 25(6), 485-495, (2020).
  • [9] Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A., “Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory”, Engineering with Computers, (2021).
  • [10] Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H., Tounsi, A., “On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and pos yield regions”, Thin-Walled Structures, 179, 109631, (2022).
  • [11] Al-Furjan, M.S.H. Habibi, M., Ghabussie, A., Safarpour, H., Safarpour, M., Tounsi, A., “Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory”, Engineering Structures, 228, 111496, (2021).
  • [12] Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W., Tounsi, A., “Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems”, Engineering with Computers, (2020).
  • [13] Djilali, N., Bousahla, A.A., Kaci, A., Selim, M.M., Bourada, F., Tounsi, A.J., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., “Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT”, Steel and Composite Structures, 42, 779-789, (2022).
  • [14] Huang, Y., Karami, B., Shahsavari, D., Tounsi, A., “Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels”, Archives of Civil and Mechanical Engineering, 21: 139, (2021).
  • [15] Hajmohammad, M. H., Kolahchi, R., Zarei, M. S. and Nouri, A.H., “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory”, International Journal of Mechanical Sciences, 153-154: 391-401, (2019).
  • [16] Jalali, S.K. and Heshmati, M., “Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets”, Thin-walled structures, 100: 14-24, (2016).
  • [17] Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic foundation”, Computers and Concrete, 25(6): 485-495, (2020).
  • [18] Shokravi, M., “Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory”, Steel and Composite Structures, 23(6): 623-631, (2017).
  • [19] Shafiei, H. and Setoodeh, A.R., “Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation”, Steel and Composite Structures, 24(1): 65-77, (2017).
  • [20] Moradi-Dastjerdi, R. and Payganeh, G., “Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions”, Steel and Composite Structures, 24(3): 359-367, (2017).
  • [21] Shen, H.S., “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells”, Composite Structures, 93(8): 2096-2108, (2011).
  • [22] Kiani, Y., “Thermal Postbuckling of Temperature Dependent Sandwich Beams with Carbon Nanotube Reinforced Face Sheets”, Journal of Thermal Stresses, 39: 1098-1110, (2016).
  • [23] Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Sadeghi, S., Safarpour, H., Tounsi, A., Chen, G., “A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel”, Engineering with Computers, 38, 1679-1696 (2022).
  • [24] Iijima, S., “Helical microtubules of graphitic carbon”, Nature, 354: 56-58, (1991).
  • [25] Shen, H. S., “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments”, Composite Structures, 91(1): 9-19, (2009).
  • [26] Shen, H.S. and Zhang, C. L., “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates”, Materials and Design, 31: 3403-3411, (2010).
  • [27] Sofiyev, A.H., Turkaslan, B.E., Bayramov, R.P. and Salamci, M. U., “Analytical solution of stability of FG-CNTRC conical shells under external pressures”, Thin-walled Structures, 144: 106338, (2019).
  • [28] Mirzaei, M. and Kiani, Y., “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells”, Aerospace Science and Technology, 47: 42-53, (2015).
  • [29] Kolahchi, R., Safari, M. and Esmailpour, M., “Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium”, Composite Structures, 150: 255-265, (2016).
  • [30] Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M., “Earthquake induced dynamic detection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects”, Composite Structures, 187: 498-508, (2018).
  • [31] Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A., “On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams”, Steel and Composite Structures, 19: 1259-1277, (2015).
  • [32] Kaci, A., Tounsi, A., Bakhti, K., Adda Bedia, E.A., “Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates”, Steel and Composite Structures, 12(6): 491-504, (2012).
  • [33] Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., “Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment”, Thin-walled Structures, 170: 108549, (2022).
  • [34] Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U., “Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation”, Structures, 33: 2177-2189, (2021).
  • [35] Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., “Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations”, Steel and Composite Structures, 39(5): 631-643, (2021).
  • [36] Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R., “Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation”, Steel and Composite Structures, 38(1): 1-15, (2021).
  • [37] Wang, M., Li, Z.M. and Qiao, P., “Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets”, Composite Structures, 200: 799-809, (2018).
  • [38] Safaei, B., Dastjerdi, R.M., Qin, Z. and Chu, F., “Effect of thermal gradient load on thermoelastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations”, Composite Structures, 192: 28-37, (2018).
  • [39] Safaei, B., Dastjerdi, R.M., Qin, Z. and Chu, F., “Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads”, Composites Part B: Engineering, 161: 44-54, (2019).
  • [40] Mehar, K., Panda, S.K. and Mahapatra, T. R., “Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure”, European Journal of Mechanics; A/Solids, 65: 384-396, (2017).
  • [41] Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A.J. and Mahmoud, S.R., “Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle”, Steel and Composite Structures, 32(5): 595-610, (2019).
  • [42] Donnell, L. H., “Stability of Thin-Walled Tubes Under Torsion”, N.A.C.A. Technical Report No. 479, (1934).
  • [43] Timesli, A., Braikat, B., Jamal, M. and Damil, N., “Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression”, Comptes Rendus Mécanique, 345: 158-168, (2017).
  • [44] Asghar, S., Naeem, M.N., Hussain, M.,Taj, M. and Tounsi, A., “Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis”, Computers and Concrete, 25(2): 133-144, (2020).
  • [45] Timesli, A., “An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory”, SN Applied Sciences, 2: 407, (2020).
  • [46] Jam, J.E., and Kiani, Y., “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells”, Composite Structures, 125: 586-595, (2015).
  • [47] Kwon, H., Bradbury, C.R., and Leparoux, M., “Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite”, Advanced Engineering Materials, 13(4): 325-329, (2011).
  • [48] Shen, H.S., Wang, H., and Yang, D.Q., “Vibration of thermally postbuckled sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations”, International Journal of Mechanical Sciences, 124-125: 253-262, (2017)
  • [49] Reddy, J.N., “Mechanics of Laminated Composite Plates and Shells, Theory and Application”, CRC Press, Boca Raton, (2003).
  • [50] Brush, D., and Almroth, B., “Buckling of Bars, Plates and Shells”, in McGraw-Hill, New York, (1975).
  • [51] Kerr, A.D., “Elastic and viscoelastic foundation models”, Journal of Applied Mechanics, 31(3): 491-498, (1964).
  • [52] Kerr, A.D., “A study of a new foundation model”, Acta Mechanica, 1: 135-147, (1965).
  • [53] Timesli, A., “Analytical Modeling of Buckling Behavior of Porous FGM Cylindrical Shell Embedded within an Elastic Foundation”, Gazi University Journal of Science, 35(1): 148-165, (2022).
  • [54] Shen, H.S. and Xiang, Y., “Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments”, Engineering Structures, 56: 698-708, (2013).
  • [55] Manh, D.T., Anh, V.T.T., Nguyen, P.D. and Duc, N.D., “Nonlinear Post-Buckling of CNTs Reinforced Sandwich-Structured Composite Annular Spherical Shells”, International Journal of Structural Stability and Dynamics, 20(2): 2050018, (2020).
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mechanical Engineering
Authors

Abdelaziz Tımeslı 0000-0001-8226-4293

Early Pub Date July 19, 2023
Publication Date December 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 4

Cite

APA Tımeslı, A. (2023). Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations. Gazi University Journal of Science, 36(4), 1700-1720. https://doi.org/10.35378/gujs.998265
AMA Tımeslı A. Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations. Gazi University Journal of Science. December 2023;36(4):1700-1720. doi:10.35378/gujs.998265
Chicago Tımeslı, Abdelaziz. “Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations”. Gazi University Journal of Science 36, no. 4 (December 2023): 1700-1720. https://doi.org/10.35378/gujs.998265.
EndNote Tımeslı A (December 1, 2023) Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations. Gazi University Journal of Science 36 4 1700–1720.
IEEE A. Tımeslı, “Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations”, Gazi University Journal of Science, vol. 36, no. 4, pp. 1700–1720, 2023, doi: 10.35378/gujs.998265.
ISNAD Tımeslı, Abdelaziz. “Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations”. Gazi University Journal of Science 36/4 (December 2023), 1700-1720. https://doi.org/10.35378/gujs.998265.
JAMA Tımeslı A. Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations. Gazi University Journal of Science. 2023;36:1700–1720.
MLA Tımeslı, Abdelaziz. “Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations”. Gazi University Journal of Science, vol. 36, no. 4, 2023, pp. 1700-2, doi:10.35378/gujs.998265.
Vancouver Tımeslı A. Analytical Modeling of Buckling of Carbon Nanotubes Reinforced Sandwich-Structured Composite Shells Resting on Elastic Foundations. Gazi University Journal of Science. 2023;36(4):1700-2.