Review
BibTex RIS Cite

Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması

Year 2021, Volume: 8 Issue: 2, 276 - 298, 28.06.2021

Abstract

Fosil yakıtların hızla tükenmesi ve temiz enerji kavramının yaygın olarak kullanılmaya başlanması ile birlikte elektrikli araçlar içten yanmalı motora sahip araçların yerini almaktadır. Devletler enerji politikalarını değiştirerek temiz enerji üzerine somut adımlar atmaya başladılar. Bu kapsamda içten yanmalı araçların kullanımını sınırlandırma, yakın gelecekte ise tamamen sonlandırma planları yapmaktadırlar. Elektrikli araçların istenilen seviyeye gelebilmesi için aşması gereken sorunlar vardır. Bu sorunlar az menzil ve yüksek batarya maliyeti olarak öne çıkmaktadır. Elektrikli araçların menzillerini ve tercih edilebilirliklerini etkileyen en önemli parametre batarya teknolojisidir. Bu sorunların çözümü batarya teknolojilerindeki gelişmelerle doğru orantılıdır. Elektrikli araçların menzilleri batarya kapasiteleri ile doğrudan ilişkili olup, bataryaların yüksek güç yoğunluğuna, yüksek enerji yoğunluğuna sahip olması, hızlı şarj-deşarj edilebilmesi ve uzun ömre sahip olması istenir. Dolayısıyla günümüz elektrikli araç araştırma geliştirme çalışmaları bu konu üzerine odaklanmıştır. Bu çalışmada geçmişten günümüze kadar olan batarya kimyaları hakkında detaylı bir çalışma yapılmıştır. Bataryalar için önemli olan kavramlar açıklanarak geçmişte kullanılan ve yeni geliştirilen bataryaların üstün ve zayıf olan yönleri belirlenmiştir. Bu çalışma sonucunda incelenmiş olan pil türlerinden elektrikli araçlarda en çok tercih edilen pil türleri lityum tabanlı piller olan NMC, NCA, LTO, LPF, LMO olarak karşımıza çıkmaktadır. Gelecek vadeden Li-S, Li-air, Zn-air pilleri ise henüz ticari olarak elektrikli araçlarda kullanılmamaktadır.

Supporting Institution

İNÖNÜ ÜNİVERSİTESİ

Project Number

FOA-2018-1358

Thanks

İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine desteklerinden ötürü teşekkür ederiz.

References

  • Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652–657. doi:10.1038/451652a
  • Asghar, R., Rehman, F., Ullah, Z., Qamar, A., Ullah, K., Iqbal, K., Aman, A., & Nawaz, A. A. (2021). Electric vehicles and key adaptation challenges and prospects in Pakistan: A comprehensive review. Journal of Cleaner Production, 278. doi:10.1016/j.jclepro.2020.123375
  • Aurbach, D., McCloskey, B. D., Nazar, L. F., & Bruce, P. G. (2016). Advances in understanding mechanisms underpinning lithium-air batteries. Nature Energy, 1(9), 1–11. doi:10.1038/nenergy.2016.128
  • Bai, Y. -s., & Zhang, C. -n. (2014). Experiments study on fast charge technology for Lithium-ion electric vehicle batteries. In: Proceedings of the IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 1–6. doi:10.1109/ITEC-AP.2014.6940761
  • Bentley, W. F., & Heacock, D. K. (1996). Battery management considerations for multichemistry systems. IEEE Aerospace and Electronic Systems Magazine, 11(5), 23–26. doi:10.1109/62.494184
  • Blurton, K. F., & Sammells, A. F. (1979). Metal/air batteries: Their status and potential - a review. Journal of Power Sources, 4(4), 263–279. doi:10.1016/0378-7753(79)80001-4
  • Bruce, P., Scrosati, B., & Tarascon, J. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie - International Edition, 47(16), 2930–2946. doi:10.1002/anie.200702505
  • Bruce, P, Freunberger, S., Hardwick, L., & Tarascon, J. (2012). Li-O2 and Li-S batteries with high energy storage. Nature Materials, 11(1), 19–29. doi:10.1038/nmat3191
  • Budde-Meiwes, H., Drillkens, J., Lunz, B., Muennix, J., Rothgang, S., Kowal, J., & Sauer, D. U. (2013). A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(5), 761–776. doi:10.1177/0954407013485567
  • Burd, J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283. doi:10.1016/j.apenergy.2020.116269
  • Burke, A., & Miller, M. (2009). Performance characteristics of lithium-ion batteries of various chemistries for plug-in hybrid vehicles. In: Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition, 816–828.
  • Can Güven, E., & Gedik, K. (2019). Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 726–737. doi:10.21597/jist.446170
  • Canis, B. (2013). Battery manufacturing for hybrid and electric vehicles: Policy Issues. Congressional Research Service Report for Congress: R41709.
  • Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279–289. doi:10.1038/s41560-018-0108-1
  • Catenacci, M., Verdolini, E., Bosetti, V., & Fiorese, G. (2013). Going electric: Expert survey on the future of battery technologies for electric vehicles. Energy Policy, 61, 403–413. doi:10.1016/j.enpol.2013.06.078
  • Chan, C. C. (1993). An overview of electric vehicle technology. Proceedings of the IEEE, 81(9), 1202–1213. doi:10.1109/5.237530
  • Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles with their superior fuel economy and performance, hybrid vehicles will likely increase in popularity in coming years; further development of control theory for hybrids is essential for their progress. Fellow IEEE, 95(4), 704–718. doi:10.1109/JPROC.2007.892489
  • Chan, C. C. (2013). The rise & fall of electric vehicles in 1828-1930: Lessons learned. Proceedings of the IEEE, 101(1), 206–212. doi:10.1109/JPROC.2012.2228370
  • Chang, W. Y. (2013). The state of charge estimating methods for battery: a review. ISRN Applied Mathematics, 2013(1), 1–7. doi:10.1155/2013/953792
  • Cheng, H., Shapter, J. G., Li, Y., & Gao, G. (2021). Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57, 451–468. doi:10.1016/j.jechem.2020.08.056
  • Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1. doi:10.1038/natrevmats.2016.13
  • Christensen, J., Albertus, P., Sanchez-Carrera, R., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., & Kojic, A. (2011). A critical review of li/air batteries. Journal of The Electrochemical Society, 159(2), R1–R30. doi:10.1149/2.086202jes
  • Chu, S. & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. doi:10.1038/nature11475
  • Cluzel, C., & Douglas, C. (2012). Cost and performance of EV batteries. Final Report for The Committee on Climate Change. www.element-energy.co.uk/wordpress/wp-content/uploads/2012/06/CCC-battery-cost_-Element-Energy-report_March2012_Finalbis.pdf
  • Das, H. S., Tan, C. W., & Yatim, A. H. M. (2017). Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renewable and Sustainable Energy Reviews, 76, 268–291. doi:10.1016/j.rser.2017.03.056
  • Deng, W., Phung, J., Li, G., & Wang, X. (2021). Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 82. doi:10.1016/j.nanoen.2021.105761
  • Dikmen, İ. C., Kartaca, K., Karadağ, T., & Abbasov, T. (2018). Batarya teknolojilerine genel bir bakış. In: A. Atmaca (Eds.), 3rd International Energy & Engineering Congress Proceeding Book, (pp. 974-987).
  • Ding, Y., Cano, Z. P., Yu, A., Lu, J., & Chen, Z. (2019). Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2(1), 1–28. doi:10.1007/s41918-018-0022-z
  • Dinger, A., Martin, R., Mosquet, X., Rabl, M., Rizoulis, D., Russo, M., & Sticher, G. (2010). Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020. The Boston Consulting Group.
  • Duffner, F., Mauler, L., Wentker, M., Leker, J., & Winter, M. (2021). Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 232. doi:10.1016/j.ijpe.2020.107982
  • Enache, B., Lefter, E., & Cepisca, C. (2014). Batteries for Electrical Vehicles: A Review. In: N. Bizon, L. Dascalescu, & N. M. Tabatabaei (Eds.), Autonomous Vehicles (pp. 409–429). Intelligent Transport Systems and Smart Technologies, Nova Science Publishers, New York.
  • Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954. doi:10.1016/j.jpowsour.2009.08.089
  • Frieske, B., Kloetzke, M., & Mauser, F. (2014). Trends in vehicle concept and key technology development for hybrid and battery electric vehicles. In: Proceedings of the World Electric Vehicle Symposium and Exhibition, 1–12. doi:10.1109/EVS.2013.6914783
  • Gerlitz, E., Greifenstein, M., Hofmann, J., & Fleischer, J. (2021). Analysis of the Variety of Lithium-Ion Battery Modules and the Challenges for an Agile Automated Disassembly System. Proceedings of the 8th CIRP Global Web Conference, Procedia CIRP, 96, 175-180. doi:10.1016/j.procir.2021.01.071
  • Gerssen-Gondelach, S. J., & Faaij, A. P. C. (2012). Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 212, 111-129. doi:10.1016/j.jpowsour.2012.03.085
  • Goutam, S., Timmermans, J. M., Omar, N., Van den Bossche, P., & Van Mierlo, J. (2015). Comparative study of surface temperature behavior of commercial li-ion pouch cells of different chemistries and capacities by infrared thermography. Energies, 8(8), 1-18. doi:10.3390/en8088175
  • Grey, C. P., & Tarascon, J. M. (2016). Sustainability and in situ monitoring in battery development. Nature Materials, 16(1), 45–56. doi:10.1038/nmat4777
  • Guarnieri, M. (2011). When cars went electric, Part 1. IEEE Industrial Electronics Magazine, 5(1), 61–62. doi:10.1109/mie.2011.940248
  • Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews, 13(6–7), 1513–1522. doi:10.1016/j.rser.2008.09.028
  • Halimah, P. N., Rahardian, S., & Budiman, B. A. (2019). Battery Cells for Electric Vehicles. International Journal of Sustainable Transportation Technology, 2(2), 54–57.
  • Hannan, M. A., Hoque, M. M., Mohamed, A., & Ayob, A. (2018). Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable and Sustainable Energy Reviews, 69, 771–789. doi:10.1016/j.rser.2016.11.171
  • Hirve, S. S., & Vidyapeeth, B. (2018). A Study of Different Energy Storage Devices Used in Electric Vehicles. International Journal of Research and Analytical Reviews, 5(3), 582-595.
  • Hu, H-Y., Xie, N., Wang, C., Wu, F., Pan, M., Li, H-F., Wu, P., Wang, X-D, Zeng, Z., Deng, S., Wu, M. H., Vinodgopal, K., & Dai, G-P. (2019). Enhancing the performance of motive power lead-acid batteries by high surface area carbon black additives. Applied Sciences, 9(1). doi:10.3390/app9010186
  • Iclodean, C., Varga, B., Burnete, N., Cimerdean, D., & Jurchiş, B. (2017). Comparison of Different Battery Types for Electric Vehicles. In: Proceedings of the International Congress of Automotive and Transport Engineering - Mobility Engineering and Environment. IOP Conference Series: Materials Science and Engineering, 252, 012058. doi:10.1088/1757-899X/252/1/012058
  • Jaiswal, A., & Chalasani, S. C. (2015). The role of carbon in the negative plate of the lead-acid battery. Journal of Energy Storage, 1(1), 15–21. doi:10.1016/j.est.2015.05.002
  • Khaligh, A., & Li, Z. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814. doi:10.1109/TVT.2010.2047877
  • Kisacikoglu, M. C., Bedir, A., Ozpineci, B., & Tolbert, L. M. (2012). PHEV-EV charger technology assessment with an emphasis on V2G operation. (Technical Report: ORNL/TM-2010/221) Oak Ridge National Laboratory. doi:10.2172/1050257
  • Kolosnitsyn, V. S., & Karaseva, E. V. (2008). Lithium-sulfur batteries: Problems and solutions. Russian Journal of Electrochemistry, 44(5), 506–509. doi:10.1134/S1023193508050029
  • Kong, L., Yin, L., Xu, F., Bian, J., Yuan, H., Lu, Z., & Zhao, Y. (2021). Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 55, 80–91. doi:10.1016/j.jechem.2020.06.054
  • Kromer, M. A, & Heywood, J. B. (2007). Electric Powertrains: Opportunities and Challenges in the U.S. Light-Duty Vehicle Fleet. web.mit.edu/sloan-auto-lab/research/beforeh2/files/kromer_electric_powertrains.pdf
  • Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., & Droeder, K. (2018). Current status and challenges for automotive battery production technologies. Nature Energy, 3(4), 290–300. doi:10.1038/s41560-018-0130-3
  • Larcher, D., & Tarascon, J. M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19–29. doi:10.1038/nchem.2085
  • Leitman, S., & Brant, B. (2009). Build Your Own Electric Vehicle (2nd ed.). The McGraw-Hill Companies.
  • Li, C., Negnevitsky, M., Wang, X., Yue, W. L., & Zou, X. (2019). Multi-criteria analysis of policies for implementing clean energy vehicles in China. Energy Policy, 129, 826–840. doi:10.1016/j.enpol.2019.03.002
  • Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6). doi:10.1038/natrevmats.2016.23
  • Li, Y., & Lu, J. (2017). Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Letters, 2(6), 1370–1377. doi:10.1021/acsenergylett.7b00119
  • Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12(3), 194–206. doi:10.1038/nnano.2017.16
  • Liang, Y., Zhao, C-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J-Q., Yu, D., Liu, Y., Titirici, M-M., Chueh, Y-L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6– 32.10.1002/inf2.12000
  • Liu, J., Bao, Z., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q., Liaw, B. Y., Liu, P., Manthiram, A., Meng, Y. S., Subramanian, V. R., Toney, M. F., Viswanathan, V. V., Whittingham, M. S., Xiao, J., Xu, W., Yang, J., Yang, X. Q., & Zhang, J. G. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4(3), 180–186. doi:10.1038/s41560-019-0338-x
  • Lu, J., Chen, Z., Ma, Z., Pan, F., Curtiss, L. A., & Amine, K. (2016). The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 11(12), 1031–1038. doi:10.1038/nnano.2016.207
  • Lu, J., Wu, T., & Amine, K. (2017). State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2(3). doi:10.1038/nenergy.2017.11
  • Lukic, S. M., Cao, J., Bansal, R. C., Rodriguez, F., & Emadi, A. (2008). Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics, 55(6), 2258–2267. doi:10.1109/TIE.2008.918390
  • Lynch, W. A., & Salameh, Z. M. (1997). Realistic electric vehicle battery evaluation. IEEE Transactions on Energy Conversion, 12(4), 407–412. doi:10.1109/60.638961
  • Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2(4), 1–16. doi:10.1038/natrevmats.2016.103
  • Matthews, L., Lynes, J., Riemer, M., Del Matto, T., & Cloet, N. (2017). Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale. Energy Policy, 100, 79–88. doi:10.1016/j.enpol.2016.10.001
  • May, G. (2006). Battery options for hybrid electric vehicles. IET Hybrid Vehicle Conference 2006 Publications, 67–78. doi:10.1049/cp:20060614
  • Merry, G. W. (1991). Zinc-air batteries for electric vehicles. SAE Technical Papers. doi:10.4271/911912
  • Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56–68. doi:10.1016/j.trd.2016.03.011
  • Miao, Y., Hynan, P., Von Jouanne, A., & Yokochi, A. (2019). Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12(6), 1–20. doi:10.3390/en12061074
  • Miller, P. (2015). Automotive lithium-ion batteries. Johnson Matthey Technology Review, 59(1), 4–13. doi:10.1595/205651315X685445
  • Moralı, U., & Erol, S. (2020). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 297–309. doi:10.17341/gazimmfd.463280
  • Muratoğlu, Y., & Akkaya, A. (2015). Elektrikli Araç Teknolojisi ve Pil Yönetim Sistemi-İnceleme. Elektrik Mühendisliği Dergisi, 458, 10–14.
  • Nemry, F., Leduc, G., & Muñoz, A. (2009). Plug-in hybrid and battery-electric vehicles: state of the research and development and comparative analysis of energy and cost efficiency. Joint Research Centre (Technical Note: JRC 54699). http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=2759
  • Nor, J. K. (1993). Art of charging electric vehicle batteries. Proceedings of WESCON 1993, 521–525. doi:10.1109/WESCON.1993.488489
  • Ogura, K., & Kolhe, M. L. (2017). Battery technologies for electric vehicles. In: T. Muneer, M. L. Kolhe, & A. Doyle (Eds.), Electric Vehicles: Prospects and Challenges (pp. 139-167). Elsevier Inc. doi:10.1016/B978-0-12-803021-9.00004-5
  • Oman, H., & Gross, S. (1995). Electric-vehicle batteries. IEEE Aerospace and Electronic Systems Magazine, 10(2), 29–35. doi:10.1109/62.350734
  • Omar, N., Verbrugge, B., Mulder, G., Van Den Bossche, P., Van Mierlo, J., Daowd, M., Dhaens, M., & Pauwels, S. (2010). Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application. 2010 IEEE Vehicle Power and Propulsion Conference, 1–6, 1-3 September, Lille, France. doi:10.1109/VPPC.2010.5729083
  • Omar, N., Van Den Bossche, P., Mulder, G., Daowd, M., Timmermans, J. M., Van Mierlo, J., & Pauwels, S. (2011). Assessment of performance of lithium iron phosphate oxide, nickel manganese cobalt oxide and nickel cobalt aluminum oxide based cells for using in plug-in battery electric vehicle applications. 2011 IEEE Vehicle Power and Propulsion Conference, 1–7, 6-9 September, Chicago, IL, USA. doi:10.1109/VPPC.2011.6043017
  • Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108–119. doi:10.1016/j.apenergy.2017.10.089
  • Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. F. (2016). Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1(9), 1–11. doi:10.1038/nenergy.2016.132
  • Park, M., Ryu, J., Wang, W., & Cho, J. (2016). Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials, 2(1), 1–18. doi:10.1038/natrevmats.2016.80
  • Parsons, M. B., & Mepsted, G. O. (2014). Development of off-road hybrid-electric powertrains and review of emerging battery chemistries. 5th IET Hybrid and Electric Vehicles Conference, 1-7, 5-6 November, London. doi:10.1049/cp.2014.0940
  • Perujo, A., Grootveld, G. V., & Scholz, H. (2012). Present and future role of battery electrical vehicles in private and public urban transport. In: Z. Stević (Eds), New Generation of Electric Vehicles (pp. 3-25). Intech doi:10.5772/54507
  • Rahman, M. A., Wang, X., & Wen, C. (2014). A review of high energy density lithium-air battery technology. Journal of Applied Electrochemistry, 44(1), 5–22. doi:10.1007/s10800-013-0620-8
  • Ramoni, M. O., & Zhang, H. C. (2013). End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technologies and Environmental Policy, 15(6), 881–891. doi:10.1007/s10098-013-0588-4
  • Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372–404.10.3390/smartcities4010022
  • Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi:10.1016/j.jpowsour.2009.11.048
  • Soloveichik, G. L. (2011). Battery technologies for large-scale stationary energy storage. Annual Review of Chemical and Biomolecular Engineering, 2(1), 503–527. doi:10.1146/annurev-chembioeng-061010-114116
  • Stan, A. I., Swierczynski, M., Stroe, D. I., Teodorescu, R., & Andreasen, S. J. (2014). Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications - An overview. 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, 713–720, 22-24 May, Bran, Romania. doi:10.1109/OPTIM.2014.6850936
  • Sun, X., Li, Z., Wang, X., & Li, C. (2020). Technology development of electric vehicles: A review. Energies, 13(1), 1–29. doi:10.3390/en13010090
  • Sundaram, S. M., Kulkarni, M., & Diwakar, V. (2016). Management of large format liion batteries. 2015 IEEE International Transportation Electrification Conference, 1-7, 27-29 August, Chennai, India. doi:10.1109/ITEC-India.2015.7386883
  • Tarascon, J. M. (2010). Key challenges in future Li-battery research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3227–3241. doi:10.1098/rsta.2010.0112
  • Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367. doi:10.1038/35104644
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82–102. doi:10.1016/j.rser.2012.11.077
  • Tinğ, N. S., Aksoy, İ., & Şahin, Y. (2015). Elektri̇kli̇ Araçların Batarya Şarjında Kullanılan Güç Faktörü Düzeltmeli̇ Klasi̇k Ve Interleaved Yükselti̇ci̇ Türü Dönüştürücüleri̇n Karşılaştırılması. VI. Enerji Verimliliği Kalitesi Sempozyumu ve Sergisi 2015, 1–6, 4-6 Haziran, Kocaeli, Türkiye.
  • The Nobel Prize in Chemistry. (2019). https://www.nobelprize.org/prizes/chemistry/2019/popular-information/
  • Tredeau, F. P., & Salameh, Z. M. (2009). Evaluation of lithium iron phosphate batteries for electric vehicles application. 5th IEEE Vehicle Power and Propulsion Conference, 1266–1270, 7-10 September, Dearborn, MI, USA. doi:10.1109/VPPC.2009.5289704
  • Tubb, R. (1939). Battery-driven electric vehicles. Proceedings of the Institution of Automobile Engineers, 33(2), 582-603. doi:10.1243%2FPIAE_PROC_1938_033_029_02
  • Van den Bossche, P., Vergels, F., Van Mierlo, J., Matheys, J., & Van Autenboer, W. (2006). SUBAT: An assessment of sustainable battery technology. Journal of Power Sources, 162(2), 913–919. doi:10.1016/j.jpowsour.2005.07.039
  • Van Schalkwijk, W. A. (1993). Lithium rechargeable batteries. Proceedings of WESCON 1993, 291–296. doi:10.1109/WESCON.1993.488450
  • van Vliet, O. P. R., Kruithof, T., Turkenburg, W. C., & Faaij, A. P. C. (2010). Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars. Journal of Power Sources, 195(19), 6570–6585. doi:10.1016/j.jpowsour.2010.04.077
  • Vidyanandan, K. V. (2019). Batteries for Electric Vehicles. IEEE.
  • Wang, Y., & Huang, H. Y. S. (2011). Comparison of lithium-ion battery cathode materials and the internal stress development. In: Conference Proceedings of International Mechanical Engineering Congress and Exposition- Volume 4 (Parts A and B), 1685–1694, 11–17 November, Denver, Colorado, USA. doi:10.1115/imece2011-65663
  • Wen, J., Zhao, D., & Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648. doi:10.1016/j.renene.2020.09.055
  • Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical Reviews, 104(10), 4245–4270. doi:10.1021/cr020730k
  • Xiao, Q., Li, B., Dai, F., Yang, L., & Cai, M. (2015). Application of lithium-ion batteries in vehicle electrification. In: P. K. Shen, C-Y. Wang, S. P. Jiang, X. Sun, & J. Zhang (Eds.), Electrochemical Energy: Advanced Materials and Technologies (pp. 159-168). CRC Press.
  • Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 49, 365–385. doi:10.1016/j.rser.2015.04.130
  • Young, K., Fierro, C., & Fetcenko, M. A. (2011). Status of Ni/MH battery research and industry. IEEE Power and Energy Society General Meeting, 18–20, 24-28 July, Detroit, MI, USA. doi:10.1109/PES.2011.6039071
  • Young, K., Wang, C., Wang, L. Y., & Strunz, K. (2013). Electric Vehicle Battery Technologies. In: R. Garcia-Valle, J. A. P. Lopes (Eds.), Electric Vehicle Integration into Modern Power Networks (pp. 15-56). doi:10.1007/978-1-4614-0134-6
  • Yoshino, A. (2012). The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51(24), 5798-5800. doi:10.1002/anie.201105006

A Review Study on the Characteristics and Advantages of Battery Chemicals Used in Electric Vehicles

Year 2021, Volume: 8 Issue: 2, 276 - 298, 28.06.2021

Abstract

With the rapid depletion of fossil fuels and the widespread use of the concept of clean energy, electric vehicles are replacing vehicles with internal combustion engines. States have started to take concrete steps on clean energy by changing their energy policies. In this context, they plan to limit the use of internal combustion vehicles and to terminate them completely in the near future. There are problems that electric vehicles have to overcome in order to reach the desired level. These problems stand out as low range and high battery cost. The most important parameter affecting the range and preferability of electric vehicles is battery technology. The solution of these problems is directly proportional to the developments in battery technologies. The range of electric vehicles is directly related to the battery capacities, and it is desired that the batteries have high power density, high energy density, fast charge-discharge and long life. Therefore, today’s electric vehicle research and development studies have focused on this issue. In this study, a detailed study has been done on battery chemistry from past to present. By explaining the important concepts for batteries, the superior and non-superior aspects of the batteries used in the past and newly developed have been determined. As a result of this study, the most preferred battery types in electric vehicles, among the battery types examined, are lithium-based batteries such as NMC, NCA, LTO, LPF, LMO. Promising Li-s, Li-air, Zn-air and li-batteries are not yet commercially used in electric vehicles.

Project Number

FOA-2018-1358

References

  • Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652–657. doi:10.1038/451652a
  • Asghar, R., Rehman, F., Ullah, Z., Qamar, A., Ullah, K., Iqbal, K., Aman, A., & Nawaz, A. A. (2021). Electric vehicles and key adaptation challenges and prospects in Pakistan: A comprehensive review. Journal of Cleaner Production, 278. doi:10.1016/j.jclepro.2020.123375
  • Aurbach, D., McCloskey, B. D., Nazar, L. F., & Bruce, P. G. (2016). Advances in understanding mechanisms underpinning lithium-air batteries. Nature Energy, 1(9), 1–11. doi:10.1038/nenergy.2016.128
  • Bai, Y. -s., & Zhang, C. -n. (2014). Experiments study on fast charge technology for Lithium-ion electric vehicle batteries. In: Proceedings of the IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 1–6. doi:10.1109/ITEC-AP.2014.6940761
  • Bentley, W. F., & Heacock, D. K. (1996). Battery management considerations for multichemistry systems. IEEE Aerospace and Electronic Systems Magazine, 11(5), 23–26. doi:10.1109/62.494184
  • Blurton, K. F., & Sammells, A. F. (1979). Metal/air batteries: Their status and potential - a review. Journal of Power Sources, 4(4), 263–279. doi:10.1016/0378-7753(79)80001-4
  • Bruce, P., Scrosati, B., & Tarascon, J. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie - International Edition, 47(16), 2930–2946. doi:10.1002/anie.200702505
  • Bruce, P, Freunberger, S., Hardwick, L., & Tarascon, J. (2012). Li-O2 and Li-S batteries with high energy storage. Nature Materials, 11(1), 19–29. doi:10.1038/nmat3191
  • Budde-Meiwes, H., Drillkens, J., Lunz, B., Muennix, J., Rothgang, S., Kowal, J., & Sauer, D. U. (2013). A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(5), 761–776. doi:10.1177/0954407013485567
  • Burd, J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283. doi:10.1016/j.apenergy.2020.116269
  • Burke, A., & Miller, M. (2009). Performance characteristics of lithium-ion batteries of various chemistries for plug-in hybrid vehicles. In: Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition, 816–828.
  • Can Güven, E., & Gedik, K. (2019). Ömrünü Tamamlamış Elektrikli Araç Bataryalarının Çevresel Yönetimi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 726–737. doi:10.21597/jist.446170
  • Canis, B. (2013). Battery manufacturing for hybrid and electric vehicles: Policy Issues. Congressional Research Service Report for Congress: R41709.
  • Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279–289. doi:10.1038/s41560-018-0108-1
  • Catenacci, M., Verdolini, E., Bosetti, V., & Fiorese, G. (2013). Going electric: Expert survey on the future of battery technologies for electric vehicles. Energy Policy, 61, 403–413. doi:10.1016/j.enpol.2013.06.078
  • Chan, C. C. (1993). An overview of electric vehicle technology. Proceedings of the IEEE, 81(9), 1202–1213. doi:10.1109/5.237530
  • Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles with their superior fuel economy and performance, hybrid vehicles will likely increase in popularity in coming years; further development of control theory for hybrids is essential for their progress. Fellow IEEE, 95(4), 704–718. doi:10.1109/JPROC.2007.892489
  • Chan, C. C. (2013). The rise & fall of electric vehicles in 1828-1930: Lessons learned. Proceedings of the IEEE, 101(1), 206–212. doi:10.1109/JPROC.2012.2228370
  • Chang, W. Y. (2013). The state of charge estimating methods for battery: a review. ISRN Applied Mathematics, 2013(1), 1–7. doi:10.1155/2013/953792
  • Cheng, H., Shapter, J. G., Li, Y., & Gao, G. (2021). Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57, 451–468. doi:10.1016/j.jechem.2020.08.056
  • Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1. doi:10.1038/natrevmats.2016.13
  • Christensen, J., Albertus, P., Sanchez-Carrera, R., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., & Kojic, A. (2011). A critical review of li/air batteries. Journal of The Electrochemical Society, 159(2), R1–R30. doi:10.1149/2.086202jes
  • Chu, S. & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. doi:10.1038/nature11475
  • Cluzel, C., & Douglas, C. (2012). Cost and performance of EV batteries. Final Report for The Committee on Climate Change. www.element-energy.co.uk/wordpress/wp-content/uploads/2012/06/CCC-battery-cost_-Element-Energy-report_March2012_Finalbis.pdf
  • Das, H. S., Tan, C. W., & Yatim, A. H. M. (2017). Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renewable and Sustainable Energy Reviews, 76, 268–291. doi:10.1016/j.rser.2017.03.056
  • Deng, W., Phung, J., Li, G., & Wang, X. (2021). Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 82. doi:10.1016/j.nanoen.2021.105761
  • Dikmen, İ. C., Kartaca, K., Karadağ, T., & Abbasov, T. (2018). Batarya teknolojilerine genel bir bakış. In: A. Atmaca (Eds.), 3rd International Energy & Engineering Congress Proceeding Book, (pp. 974-987).
  • Ding, Y., Cano, Z. P., Yu, A., Lu, J., & Chen, Z. (2019). Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2(1), 1–28. doi:10.1007/s41918-018-0022-z
  • Dinger, A., Martin, R., Mosquet, X., Rabl, M., Rizoulis, D., Russo, M., & Sticher, G. (2010). Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020. The Boston Consulting Group.
  • Duffner, F., Mauler, L., Wentker, M., Leker, J., & Winter, M. (2021). Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 232. doi:10.1016/j.ijpe.2020.107982
  • Enache, B., Lefter, E., & Cepisca, C. (2014). Batteries for Electrical Vehicles: A Review. In: N. Bizon, L. Dascalescu, & N. M. Tabatabaei (Eds.), Autonomous Vehicles (pp. 409–429). Intelligent Transport Systems and Smart Technologies, Nova Science Publishers, New York.
  • Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954. doi:10.1016/j.jpowsour.2009.08.089
  • Frieske, B., Kloetzke, M., & Mauser, F. (2014). Trends in vehicle concept and key technology development for hybrid and battery electric vehicles. In: Proceedings of the World Electric Vehicle Symposium and Exhibition, 1–12. doi:10.1109/EVS.2013.6914783
  • Gerlitz, E., Greifenstein, M., Hofmann, J., & Fleischer, J. (2021). Analysis of the Variety of Lithium-Ion Battery Modules and the Challenges for an Agile Automated Disassembly System. Proceedings of the 8th CIRP Global Web Conference, Procedia CIRP, 96, 175-180. doi:10.1016/j.procir.2021.01.071
  • Gerssen-Gondelach, S. J., & Faaij, A. P. C. (2012). Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 212, 111-129. doi:10.1016/j.jpowsour.2012.03.085
  • Goutam, S., Timmermans, J. M., Omar, N., Van den Bossche, P., & Van Mierlo, J. (2015). Comparative study of surface temperature behavior of commercial li-ion pouch cells of different chemistries and capacities by infrared thermography. Energies, 8(8), 1-18. doi:10.3390/en8088175
  • Grey, C. P., & Tarascon, J. M. (2016). Sustainability and in situ monitoring in battery development. Nature Materials, 16(1), 45–56. doi:10.1038/nmat4777
  • Guarnieri, M. (2011). When cars went electric, Part 1. IEEE Industrial Electronics Magazine, 5(1), 61–62. doi:10.1109/mie.2011.940248
  • Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews, 13(6–7), 1513–1522. doi:10.1016/j.rser.2008.09.028
  • Halimah, P. N., Rahardian, S., & Budiman, B. A. (2019). Battery Cells for Electric Vehicles. International Journal of Sustainable Transportation Technology, 2(2), 54–57.
  • Hannan, M. A., Hoque, M. M., Mohamed, A., & Ayob, A. (2018). Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable and Sustainable Energy Reviews, 69, 771–789. doi:10.1016/j.rser.2016.11.171
  • Hirve, S. S., & Vidyapeeth, B. (2018). A Study of Different Energy Storage Devices Used in Electric Vehicles. International Journal of Research and Analytical Reviews, 5(3), 582-595.
  • Hu, H-Y., Xie, N., Wang, C., Wu, F., Pan, M., Li, H-F., Wu, P., Wang, X-D, Zeng, Z., Deng, S., Wu, M. H., Vinodgopal, K., & Dai, G-P. (2019). Enhancing the performance of motive power lead-acid batteries by high surface area carbon black additives. Applied Sciences, 9(1). doi:10.3390/app9010186
  • Iclodean, C., Varga, B., Burnete, N., Cimerdean, D., & Jurchiş, B. (2017). Comparison of Different Battery Types for Electric Vehicles. In: Proceedings of the International Congress of Automotive and Transport Engineering - Mobility Engineering and Environment. IOP Conference Series: Materials Science and Engineering, 252, 012058. doi:10.1088/1757-899X/252/1/012058
  • Jaiswal, A., & Chalasani, S. C. (2015). The role of carbon in the negative plate of the lead-acid battery. Journal of Energy Storage, 1(1), 15–21. doi:10.1016/j.est.2015.05.002
  • Khaligh, A., & Li, Z. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814. doi:10.1109/TVT.2010.2047877
  • Kisacikoglu, M. C., Bedir, A., Ozpineci, B., & Tolbert, L. M. (2012). PHEV-EV charger technology assessment with an emphasis on V2G operation. (Technical Report: ORNL/TM-2010/221) Oak Ridge National Laboratory. doi:10.2172/1050257
  • Kolosnitsyn, V. S., & Karaseva, E. V. (2008). Lithium-sulfur batteries: Problems and solutions. Russian Journal of Electrochemistry, 44(5), 506–509. doi:10.1134/S1023193508050029
  • Kong, L., Yin, L., Xu, F., Bian, J., Yuan, H., Lu, Z., & Zhao, Y. (2021). Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 55, 80–91. doi:10.1016/j.jechem.2020.06.054
  • Kromer, M. A, & Heywood, J. B. (2007). Electric Powertrains: Opportunities and Challenges in the U.S. Light-Duty Vehicle Fleet. web.mit.edu/sloan-auto-lab/research/beforeh2/files/kromer_electric_powertrains.pdf
  • Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., & Droeder, K. (2018). Current status and challenges for automotive battery production technologies. Nature Energy, 3(4), 290–300. doi:10.1038/s41560-018-0130-3
  • Larcher, D., & Tarascon, J. M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19–29. doi:10.1038/nchem.2085
  • Leitman, S., & Brant, B. (2009). Build Your Own Electric Vehicle (2nd ed.). The McGraw-Hill Companies.
  • Li, C., Negnevitsky, M., Wang, X., Yue, W. L., & Zou, X. (2019). Multi-criteria analysis of policies for implementing clean energy vehicles in China. Energy Policy, 129, 826–840. doi:10.1016/j.enpol.2019.03.002
  • Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6). doi:10.1038/natrevmats.2016.23
  • Li, Y., & Lu, J. (2017). Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Letters, 2(6), 1370–1377. doi:10.1021/acsenergylett.7b00119
  • Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12(3), 194–206. doi:10.1038/nnano.2017.16
  • Liang, Y., Zhao, C-Z., Yuan, H., Chen, Y., Zhang, W., Huang, J-Q., Yu, D., Liu, Y., Titirici, M-M., Chueh, Y-L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6– 32.10.1002/inf2.12000
  • Liu, J., Bao, Z., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q., Liaw, B. Y., Liu, P., Manthiram, A., Meng, Y. S., Subramanian, V. R., Toney, M. F., Viswanathan, V. V., Whittingham, M. S., Xiao, J., Xu, W., Yang, J., Yang, X. Q., & Zhang, J. G. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4(3), 180–186. doi:10.1038/s41560-019-0338-x
  • Lu, J., Chen, Z., Ma, Z., Pan, F., Curtiss, L. A., & Amine, K. (2016). The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 11(12), 1031–1038. doi:10.1038/nnano.2016.207
  • Lu, J., Wu, T., & Amine, K. (2017). State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2(3). doi:10.1038/nenergy.2017.11
  • Lukic, S. M., Cao, J., Bansal, R. C., Rodriguez, F., & Emadi, A. (2008). Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics, 55(6), 2258–2267. doi:10.1109/TIE.2008.918390
  • Lynch, W. A., & Salameh, Z. M. (1997). Realistic electric vehicle battery evaluation. IEEE Transactions on Energy Conversion, 12(4), 407–412. doi:10.1109/60.638961
  • Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2(4), 1–16. doi:10.1038/natrevmats.2016.103
  • Matthews, L., Lynes, J., Riemer, M., Del Matto, T., & Cloet, N. (2017). Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale. Energy Policy, 100, 79–88. doi:10.1016/j.enpol.2016.10.001
  • May, G. (2006). Battery options for hybrid electric vehicles. IET Hybrid Vehicle Conference 2006 Publications, 67–78. doi:10.1049/cp:20060614
  • Merry, G. W. (1991). Zinc-air batteries for electric vehicles. SAE Technical Papers. doi:10.4271/911912
  • Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56–68. doi:10.1016/j.trd.2016.03.011
  • Miao, Y., Hynan, P., Von Jouanne, A., & Yokochi, A. (2019). Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12(6), 1–20. doi:10.3390/en12061074
  • Miller, P. (2015). Automotive lithium-ion batteries. Johnson Matthey Technology Review, 59(1), 4–13. doi:10.1595/205651315X685445
  • Moralı, U., & Erol, S. (2020). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 297–309. doi:10.17341/gazimmfd.463280
  • Muratoğlu, Y., & Akkaya, A. (2015). Elektrikli Araç Teknolojisi ve Pil Yönetim Sistemi-İnceleme. Elektrik Mühendisliği Dergisi, 458, 10–14.
  • Nemry, F., Leduc, G., & Muñoz, A. (2009). Plug-in hybrid and battery-electric vehicles: state of the research and development and comparative analysis of energy and cost efficiency. Joint Research Centre (Technical Note: JRC 54699). http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=2759
  • Nor, J. K. (1993). Art of charging electric vehicle batteries. Proceedings of WESCON 1993, 521–525. doi:10.1109/WESCON.1993.488489
  • Ogura, K., & Kolhe, M. L. (2017). Battery technologies for electric vehicles. In: T. Muneer, M. L. Kolhe, & A. Doyle (Eds.), Electric Vehicles: Prospects and Challenges (pp. 139-167). Elsevier Inc. doi:10.1016/B978-0-12-803021-9.00004-5
  • Oman, H., & Gross, S. (1995). Electric-vehicle batteries. IEEE Aerospace and Electronic Systems Magazine, 10(2), 29–35. doi:10.1109/62.350734
  • Omar, N., Verbrugge, B., Mulder, G., Van Den Bossche, P., Van Mierlo, J., Daowd, M., Dhaens, M., & Pauwels, S. (2010). Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application. 2010 IEEE Vehicle Power and Propulsion Conference, 1–6, 1-3 September, Lille, France. doi:10.1109/VPPC.2010.5729083
  • Omar, N., Van Den Bossche, P., Mulder, G., Daowd, M., Timmermans, J. M., Van Mierlo, J., & Pauwels, S. (2011). Assessment of performance of lithium iron phosphate oxide, nickel manganese cobalt oxide and nickel cobalt aluminum oxide based cells for using in plug-in battery electric vehicle applications. 2011 IEEE Vehicle Power and Propulsion Conference, 1–7, 6-9 September, Chicago, IL, USA. doi:10.1109/VPPC.2011.6043017
  • Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108–119. doi:10.1016/j.apenergy.2017.10.089
  • Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. F. (2016). Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1(9), 1–11. doi:10.1038/nenergy.2016.132
  • Park, M., Ryu, J., Wang, W., & Cho, J. (2016). Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials, 2(1), 1–18. doi:10.1038/natrevmats.2016.80
  • Parsons, M. B., & Mepsted, G. O. (2014). Development of off-road hybrid-electric powertrains and review of emerging battery chemistries. 5th IET Hybrid and Electric Vehicles Conference, 1-7, 5-6 November, London. doi:10.1049/cp.2014.0940
  • Perujo, A., Grootveld, G. V., & Scholz, H. (2012). Present and future role of battery electrical vehicles in private and public urban transport. In: Z. Stević (Eds), New Generation of Electric Vehicles (pp. 3-25). Intech doi:10.5772/54507
  • Rahman, M. A., Wang, X., & Wen, C. (2014). A review of high energy density lithium-air battery technology. Journal of Applied Electrochemistry, 44(1), 5–22. doi:10.1007/s10800-013-0620-8
  • Ramoni, M. O., & Zhang, H. C. (2013). End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technologies and Environmental Policy, 15(6), 881–891. doi:10.1007/s10098-013-0588-4
  • Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372–404.10.3390/smartcities4010022
  • Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi:10.1016/j.jpowsour.2009.11.048
  • Soloveichik, G. L. (2011). Battery technologies for large-scale stationary energy storage. Annual Review of Chemical and Biomolecular Engineering, 2(1), 503–527. doi:10.1146/annurev-chembioeng-061010-114116
  • Stan, A. I., Swierczynski, M., Stroe, D. I., Teodorescu, R., & Andreasen, S. J. (2014). Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications - An overview. 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, 713–720, 22-24 May, Bran, Romania. doi:10.1109/OPTIM.2014.6850936
  • Sun, X., Li, Z., Wang, X., & Li, C. (2020). Technology development of electric vehicles: A review. Energies, 13(1), 1–29. doi:10.3390/en13010090
  • Sundaram, S. M., Kulkarni, M., & Diwakar, V. (2016). Management of large format liion batteries. 2015 IEEE International Transportation Electrification Conference, 1-7, 27-29 August, Chennai, India. doi:10.1109/ITEC-India.2015.7386883
  • Tarascon, J. M. (2010). Key challenges in future Li-battery research. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3227–3241. doi:10.1098/rsta.2010.0112
  • Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367. doi:10.1038/35104644
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82–102. doi:10.1016/j.rser.2012.11.077
  • Tinğ, N. S., Aksoy, İ., & Şahin, Y. (2015). Elektri̇kli̇ Araçların Batarya Şarjında Kullanılan Güç Faktörü Düzeltmeli̇ Klasi̇k Ve Interleaved Yükselti̇ci̇ Türü Dönüştürücüleri̇n Karşılaştırılması. VI. Enerji Verimliliği Kalitesi Sempozyumu ve Sergisi 2015, 1–6, 4-6 Haziran, Kocaeli, Türkiye.
  • The Nobel Prize in Chemistry. (2019). https://www.nobelprize.org/prizes/chemistry/2019/popular-information/
  • Tredeau, F. P., & Salameh, Z. M. (2009). Evaluation of lithium iron phosphate batteries for electric vehicles application. 5th IEEE Vehicle Power and Propulsion Conference, 1266–1270, 7-10 September, Dearborn, MI, USA. doi:10.1109/VPPC.2009.5289704
  • Tubb, R. (1939). Battery-driven electric vehicles. Proceedings of the Institution of Automobile Engineers, 33(2), 582-603. doi:10.1243%2FPIAE_PROC_1938_033_029_02
  • Van den Bossche, P., Vergels, F., Van Mierlo, J., Matheys, J., & Van Autenboer, W. (2006). SUBAT: An assessment of sustainable battery technology. Journal of Power Sources, 162(2), 913–919. doi:10.1016/j.jpowsour.2005.07.039
  • Van Schalkwijk, W. A. (1993). Lithium rechargeable batteries. Proceedings of WESCON 1993, 291–296. doi:10.1109/WESCON.1993.488450
  • van Vliet, O. P. R., Kruithof, T., Turkenburg, W. C., & Faaij, A. P. C. (2010). Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars. Journal of Power Sources, 195(19), 6570–6585. doi:10.1016/j.jpowsour.2010.04.077
  • Vidyanandan, K. V. (2019). Batteries for Electric Vehicles. IEEE.
  • Wang, Y., & Huang, H. Y. S. (2011). Comparison of lithium-ion battery cathode materials and the internal stress development. In: Conference Proceedings of International Mechanical Engineering Congress and Exposition- Volume 4 (Parts A and B), 1685–1694, 11–17 November, Denver, Colorado, USA. doi:10.1115/imece2011-65663
  • Wen, J., Zhao, D., & Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648. doi:10.1016/j.renene.2020.09.055
  • Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical Reviews, 104(10), 4245–4270. doi:10.1021/cr020730k
  • Xiao, Q., Li, B., Dai, F., Yang, L., & Cai, M. (2015). Application of lithium-ion batteries in vehicle electrification. In: P. K. Shen, C-Y. Wang, S. P. Jiang, X. Sun, & J. Zhang (Eds.), Electrochemical Energy: Advanced Materials and Technologies (pp. 159-168). CRC Press.
  • Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 49, 365–385. doi:10.1016/j.rser.2015.04.130
  • Young, K., Fierro, C., & Fetcenko, M. A. (2011). Status of Ni/MH battery research and industry. IEEE Power and Energy Society General Meeting, 18–20, 24-28 July, Detroit, MI, USA. doi:10.1109/PES.2011.6039071
  • Young, K., Wang, C., Wang, L. Y., & Strunz, K. (2013). Electric Vehicle Battery Technologies. In: R. Garcia-Valle, J. A. P. Lopes (Eds.), Electric Vehicle Integration into Modern Power Networks (pp. 15-56). doi:10.1007/978-1-4614-0134-6
  • Yoshino, A. (2012). The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51(24), 5798-5800. doi:10.1002/anie.201105006
There are 110 citations in total.

Details

Primary Language Turkish
Journal Section Electrical & Electronics Engineering
Authors

Ömer Faruk Özcan 0000-0003-1708-5699

Teoman Karadağ 0000-0002-7682-7771

Mehmet Altuğ 0000-0002-4745-9164

Ömerülfaruk Özgüven 0000-0002-8376-641X

Project Number FOA-2018-1358
Publication Date June 28, 2021
Submission Date April 12, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Özcan, Ö. F., Karadağ, T., Altuğ, M., Özgüven, Ö. (2021). Elektrikli Araçlarda Kullanılan Pil Kimyasallarının Özellikleri ve Üstün Yönlerinin Kıyaslanması Üzerine Bir Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 276-298.