Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 2, 136 - 155, 30.06.2022
https://doi.org/10.54287/gujsa.1104126

Abstract

References

  • Allen, D. T., & Gavalas, G. R. (1984). Reactions of methylen and ether bridges. Fuel, 63(5), 586-592. doi:10.1016/0016-2361(84)90150-9
  • Angelova, G., Kamenski, D., & Dimova, N. (1989). Kinetics of donor-solvent liquefaction of Bulgarian brown coal. Fuel, 68(11), 1434-1438. doi:10.1016/0016-2361(89)90042-2
  • Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1991). Analysis of microwave heating of materials with temperature-dependent properties. AIChE J, 37(3), 313-322. doi:10.1002/aic.690370302
  • Ceylan, K., & Olcay, A. (1998). Kinetic rate models for dissolution of Turkish lignites in tetralin under nitrogen or hydrogen atmospheres. Fuel Processing Technology, 53(3), 183-195. doi:10.1016/S0378-3820(97)00054-4
  • Cronauer, D. C., Shah, Y. T., & Ruberto, R. G. (1978). Kinetics of thermal liquefaction of Belle Ayr subbituminous coal. Industrial & Engineering Chemistry Process Design and Development, 17(3), 281-288. doi:10.1021/i260067a013
  • Cronauer, D. C., Jewell, D. M., Shah, Y. T., & Modi, R. J. (1979). Mechanism and kinetics of selected hydrogen transfer reactions typical of coal liquefaction. Industrial & Engineering Chemistry Fundamentals, 18(2), 153-162. doi:10.1021/i160070a011
  • Cunliffe, B. (Ed.). (2001). The Oxford illustrated history of prehistoric Europe. Oxford Illustrated History.
  • Doetschman, D. C., Ito, E., Ito, O., & Kameyama, H. (1992). Photochemical extraction from tetrahydrofuran slurries of representative coals. Energy & Fuels, 6(5), 635-42. doi:10.1021/ef00035a015
  • Farcasiu, M., Mitchell, T. O., & Whitehurst, D. D. (1977). Asphaltols - Keys to Coal Liquefaction. Chemtech, 7, 680-686.
  • Gao, D., Ye, C., Ren, X., & Zhang, Y. (2018). Life cycle analysis of direct and indirect coal liquefaction for vehicle power in China. Fuel Processing Technology, 169, 42-49. doi:10.1016/j.fuproc.2017.09.007
  • Grewal, M. S., & Andrews, A. P. (2001). Kalman Filtering: Theory and Practice Using MATLAB (2nd ed.). John Wiley & Sons.
  • Han, K. W., Dixit, V. B., & Wen, C. Y. (1978). Analysis and scale-up consideration of bituminous coal liquefaction rate processes. Industrial & Engineering Chemistry Process Design and Development, 17(1), 16-21. doi:10.1021/i260065a004
  • Hao, P., Bai, Z.-Q., Zhao, Z.-T., Yan, J.-C., Li, X. Guo, Z.-X., Xu J.-L, Bai, J., & Li, W. (2017). Study on the preheating stage of low rank coals liquefaction: product distribution, chemical structural change of coal and hydrogen transfer. Fuel Processing Technology, 159, 153-159. doi:10.1016/j.fuproc.2017.01.028
  • Hao, P., Bai, Z.-Q., Zhao, Z.-T., Ge, Z.-F., Hou, R.-R., Bai, J., Guo, Z.-X., Kong, L.-X., & Li, W. (2018). Role of hydrogen donor and non-donor binary solvents in product distribution and hydrogen consumption during direct coal liquefaction. Fuel Processing Technology, 173, 75-80. doi:10.1016/j.fuproc.2018.01.012
  • Hsiang-Hui, K., & Stock, L. M. (1984). Aspects of the chemistry of donor solvent coal dissolution: Promotion of the bond cleavage reactions of diphenylalkanes and the related ethers and amines. Fuel, 63(6), 810-815. doi:10.1016/0016-2361(84)90072-3
  • Huang, H., Wang, K., Wang, S., Klein, M. T., & Calkins, W. H. (1998). Studies of coal liquefaction at very short reaction times. 2. Energy & Fuels, 12(1), 95-101. doi:10.1021/ef970073c
  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1), 35-45. doi:10.1115/1.3662552
  • Karacan, F. (2004). Ultraviyole Işınların Katalizörlü Ortamda Kömür Sıvılaşmasına Etkisi. PhD Thesis, Ankara University.
  • Kavuştu, H. (2012). Kömürlerin Tetralinde UV Işınları ve Mikrodalga Enerji ile Sıvılaşma Mekanizmalarının Kesikli Zaman Modelleri Kullanılarak Belirlenmesi. MSc Thesis, Ankara University.
  • Li, X., Hu, H., Zhu, S., Hu, S., Wu, B., & Meng, M. (2008). Kinetics of coal liquefaction during heating up and isothermal stages. Fuel, 87(4-5), 508-513. doi:10.1016/j.fuel.2007.03.041
  • Li, W., Bai, Z.-Q., Bai, J., & Li, X. (2017). Transformation and roles of inherent mineral matter in direct coal liquefaction: a mini-review. Fuel, 197, 209-216. doi:10.1016/j.fuel.2017.02.024
  • Liebenberg, B. J., & Potgieter, H. G. J. (1973). The uncatalysed hydrogenation of coal. Fuel, 52(2), 130-133. doi:10.1016/0016-2361(73)90036-7
  • Liu, R., Li, Y., Wang, C., Xiao, N., He, L., Guo, H., Wan, P., Zhou, Y. & Qiu, J. (2018). Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 178, 35-40. doi:10.1016/j.fuproc.2018.04.033
  • Mohan, G., & Silla, H. (1981). Kinetics of donor-solvent liquefaction of bituminous coals in nonisothermal experiments. Industrial & Engineering Chemistry Process Design and Development, 20(2), 349-358. doi:10.1021/i200013a026
  • Shah, Y. T., Cronauer, D. C., McIlvried, H. G., & Paraskos, J. A. (1978). Kinetics of catalytic liquefaction of Big Horn coal in a segmented bed reactor. Industrial & Engineering Chemistry Process Design and Development, 17(3), 288-301. doi:10.1021/i260067a014
  • Shalabi, M. A., Baldwin, R. M., Bain, R. L., Gary, J. H., & Golden, J. O. (1978). Kinetics of coal liquefaction. Coal Processing Technology, 4, 82-86.
  • Shalabi, M. A., Baldwin, R. M., Bain, R. L., Gary, J. H., & Golden, J. O. (1979). Noncatalytic coal liquefaction in a donor solvent. Rate of formation of oil, asphaltenes, and preasphaltenes. Industrial & Engineering Chemistry Process Design and Development, 18(3), 474-479. doi:10.1021/i260071a021
  • Shui, H., Chen, Z., Wang, Z., & Zhang, D. (2010). Kinetics of Shenhua coal liquefaction catalyzed by SO42=/ZrO2 solid acid. Fuel, 89(1), 67-72. doi:10.1016/j.fuel.2009.02.019
  • Snape, C. E. (1987). Characterisation of organic coal structure for liquefaction. Fuel Processing Technology, 15, 257-279. doi:10.1016/0378-3820(87)90050-6
  • Söğüt, F. (1997). UV ışınları ile linyitlerin desülfürizasyonu. PhD Thesis, Ankara University.
  • Söğüt, F., & Olcay, A. (1998). Dissolution of lignites in tetralin at ambient temperature: effects of ultraviolet irradiation. Fuel Processing Technology, 55(2), 107-115. doi:10.1016/S0378-3820(98)00045-9
  • Speight, J. G. (2008). Synthetic fuels handbook: properties, process and performance. The McGraw-Hill Companies, Inc.
  • Şimşek, E. H. (1997). Türk kömürlerinin mikrodalga enerji etkisiyle tetralindeki hidrojenasyonu. PhD Thesis, Ankara University.
  • Şimşek, E. H., Karaduman, A., & Olcay, A. (2001). Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy. Fuel, 80(15), 2181-2188. doi:10.1016/S00162361(01)00102-8
  • Şimşek, E. H., Güleç, F., & Kavuştu, H. (2017). Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models. Fuel, 207, 814-820. doi:10.1016/j.fuel.2017.06.004
  • Şimşek, E. H., Güleç, F., Kavuştu, H., & Karaduman, A. (2019). Determination of liquefaction mechanisms of Zonguldak, Soma and Beypazarı coals using discrete time models. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 79-88. doi:10.17341/gazimmfd.416464
  • Şimşek, E. H., Güleç, F., & Akçadağ, F. S. (2020). Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models. Fuel Processing Technology, 198, 106227. doi:10.1016/j.fuproc.2019.106227
  • Wang, Z., Shui, H., Zhu, Y., & Gao, J. (2009). Catalysis of SO42-/ZrO2 solid acid for the liquefaction of coal. Fuel 88, 885-889. doi:10.1016/j.fuel.2008.10.040
  • Wei, L., Jian, Z., Chunzhi, W., & Hui, X. (2013). Kalman filter Localization algorithm based on SDS-TWR ranging. TELKOMNIKA Indonesian Journal of Electrical Engineering, 11(3), 1436-48. doi:10.11591/telkomnika.v11i3.2225
  • Welch, G., & Bishop, G. (2006). An introduction to the Kalman filter (Technical Report: TR 95-041). University of North Carolina at Chapel Hill.
  • Yürüm, Y., & Yig̃insu, I. (1982). Depolymerization of Turkish lignites: 3. Effect of ultraviolet radiation. Fuel, 61(11), 1138-1140. doi:10.1016/0016-2361(82)90200-9

Experimental and Modelling Comparison of the Effects of UV Energy on Liquefaction Efficiency in Coal Liquefaction Mechanism

Year 2022, Volume: 9 Issue: 2, 136 - 155, 30.06.2022
https://doi.org/10.54287/gujsa.1104126

Abstract

Coal liquefaction process gives very efficient results, especially for value-added chemicals production from low-quality coal. However, when the literature is examined, notably there is not enough scientific study for liquefaction mechanisms. Here, in this study, There are five different liquefaction mechanisms of Beypazarı coals. It includes four different UV light power and a catalyst environment using 180 watts of UV power. Created first-order linear discrete models were proposed and compared with the experimental results. Additionally, the reaction rate constants for each proposed kinetic model were calculated using the Kalman filter method. However, to evaluate the compatibility of the experimental results and the modeling results, the sum of the squared differences of the values calculated from the experimental data and the models was examined. Because of these studies, it has been observed that the rate constants of direct oil formation from coal at 120 and 180 watts of UV power are at least three times greater than the rate constants for the formation of asphaltene and pre-asphaltene from coal. Simultaneously, The results demonstrate that models with reversible and parallel steps are more compatible with experimental data. Experimental data and modeling results are much more compatible with the studies conducted on Beypazarı coals in a 180-watt UV-catalyzed environment compared to a 180-watt catalyst-free environment. In the presence of ZnO catalyst, the rate constants occurring in the conversion reaction from coal to oil were again three times faster than the conversion rate constants from coal to asphaltene and from coal to preasphaltene. In the modeling and experimental results conducted in the catalyst environment, the efficiency was higher than the catalyst-free environment. The best fit was obtained using model that has both reversible (between asphaltene: coal, asphaltene: oil, and asphaltene: preasphaltene) and irreversible (coal: oil, coal: preasphaltene and preasphaltene: oil) reaction steps. The model also evidenced that reversible reactions are critical on the liquefaction of Beypazarı coal.

References

  • Allen, D. T., & Gavalas, G. R. (1984). Reactions of methylen and ether bridges. Fuel, 63(5), 586-592. doi:10.1016/0016-2361(84)90150-9
  • Angelova, G., Kamenski, D., & Dimova, N. (1989). Kinetics of donor-solvent liquefaction of Bulgarian brown coal. Fuel, 68(11), 1434-1438. doi:10.1016/0016-2361(89)90042-2
  • Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1991). Analysis of microwave heating of materials with temperature-dependent properties. AIChE J, 37(3), 313-322. doi:10.1002/aic.690370302
  • Ceylan, K., & Olcay, A. (1998). Kinetic rate models for dissolution of Turkish lignites in tetralin under nitrogen or hydrogen atmospheres. Fuel Processing Technology, 53(3), 183-195. doi:10.1016/S0378-3820(97)00054-4
  • Cronauer, D. C., Shah, Y. T., & Ruberto, R. G. (1978). Kinetics of thermal liquefaction of Belle Ayr subbituminous coal. Industrial & Engineering Chemistry Process Design and Development, 17(3), 281-288. doi:10.1021/i260067a013
  • Cronauer, D. C., Jewell, D. M., Shah, Y. T., & Modi, R. J. (1979). Mechanism and kinetics of selected hydrogen transfer reactions typical of coal liquefaction. Industrial & Engineering Chemistry Fundamentals, 18(2), 153-162. doi:10.1021/i160070a011
  • Cunliffe, B. (Ed.). (2001). The Oxford illustrated history of prehistoric Europe. Oxford Illustrated History.
  • Doetschman, D. C., Ito, E., Ito, O., & Kameyama, H. (1992). Photochemical extraction from tetrahydrofuran slurries of representative coals. Energy & Fuels, 6(5), 635-42. doi:10.1021/ef00035a015
  • Farcasiu, M., Mitchell, T. O., & Whitehurst, D. D. (1977). Asphaltols - Keys to Coal Liquefaction. Chemtech, 7, 680-686.
  • Gao, D., Ye, C., Ren, X., & Zhang, Y. (2018). Life cycle analysis of direct and indirect coal liquefaction for vehicle power in China. Fuel Processing Technology, 169, 42-49. doi:10.1016/j.fuproc.2017.09.007
  • Grewal, M. S., & Andrews, A. P. (2001). Kalman Filtering: Theory and Practice Using MATLAB (2nd ed.). John Wiley & Sons.
  • Han, K. W., Dixit, V. B., & Wen, C. Y. (1978). Analysis and scale-up consideration of bituminous coal liquefaction rate processes. Industrial & Engineering Chemistry Process Design and Development, 17(1), 16-21. doi:10.1021/i260065a004
  • Hao, P., Bai, Z.-Q., Zhao, Z.-T., Yan, J.-C., Li, X. Guo, Z.-X., Xu J.-L, Bai, J., & Li, W. (2017). Study on the preheating stage of low rank coals liquefaction: product distribution, chemical structural change of coal and hydrogen transfer. Fuel Processing Technology, 159, 153-159. doi:10.1016/j.fuproc.2017.01.028
  • Hao, P., Bai, Z.-Q., Zhao, Z.-T., Ge, Z.-F., Hou, R.-R., Bai, J., Guo, Z.-X., Kong, L.-X., & Li, W. (2018). Role of hydrogen donor and non-donor binary solvents in product distribution and hydrogen consumption during direct coal liquefaction. Fuel Processing Technology, 173, 75-80. doi:10.1016/j.fuproc.2018.01.012
  • Hsiang-Hui, K., & Stock, L. M. (1984). Aspects of the chemistry of donor solvent coal dissolution: Promotion of the bond cleavage reactions of diphenylalkanes and the related ethers and amines. Fuel, 63(6), 810-815. doi:10.1016/0016-2361(84)90072-3
  • Huang, H., Wang, K., Wang, S., Klein, M. T., & Calkins, W. H. (1998). Studies of coal liquefaction at very short reaction times. 2. Energy & Fuels, 12(1), 95-101. doi:10.1021/ef970073c
  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1), 35-45. doi:10.1115/1.3662552
  • Karacan, F. (2004). Ultraviyole Işınların Katalizörlü Ortamda Kömür Sıvılaşmasına Etkisi. PhD Thesis, Ankara University.
  • Kavuştu, H. (2012). Kömürlerin Tetralinde UV Işınları ve Mikrodalga Enerji ile Sıvılaşma Mekanizmalarının Kesikli Zaman Modelleri Kullanılarak Belirlenmesi. MSc Thesis, Ankara University.
  • Li, X., Hu, H., Zhu, S., Hu, S., Wu, B., & Meng, M. (2008). Kinetics of coal liquefaction during heating up and isothermal stages. Fuel, 87(4-5), 508-513. doi:10.1016/j.fuel.2007.03.041
  • Li, W., Bai, Z.-Q., Bai, J., & Li, X. (2017). Transformation and roles of inherent mineral matter in direct coal liquefaction: a mini-review. Fuel, 197, 209-216. doi:10.1016/j.fuel.2017.02.024
  • Liebenberg, B. J., & Potgieter, H. G. J. (1973). The uncatalysed hydrogenation of coal. Fuel, 52(2), 130-133. doi:10.1016/0016-2361(73)90036-7
  • Liu, R., Li, Y., Wang, C., Xiao, N., He, L., Guo, H., Wan, P., Zhou, Y. & Qiu, J. (2018). Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 178, 35-40. doi:10.1016/j.fuproc.2018.04.033
  • Mohan, G., & Silla, H. (1981). Kinetics of donor-solvent liquefaction of bituminous coals in nonisothermal experiments. Industrial & Engineering Chemistry Process Design and Development, 20(2), 349-358. doi:10.1021/i200013a026
  • Shah, Y. T., Cronauer, D. C., McIlvried, H. G., & Paraskos, J. A. (1978). Kinetics of catalytic liquefaction of Big Horn coal in a segmented bed reactor. Industrial & Engineering Chemistry Process Design and Development, 17(3), 288-301. doi:10.1021/i260067a014
  • Shalabi, M. A., Baldwin, R. M., Bain, R. L., Gary, J. H., & Golden, J. O. (1978). Kinetics of coal liquefaction. Coal Processing Technology, 4, 82-86.
  • Shalabi, M. A., Baldwin, R. M., Bain, R. L., Gary, J. H., & Golden, J. O. (1979). Noncatalytic coal liquefaction in a donor solvent. Rate of formation of oil, asphaltenes, and preasphaltenes. Industrial & Engineering Chemistry Process Design and Development, 18(3), 474-479. doi:10.1021/i260071a021
  • Shui, H., Chen, Z., Wang, Z., & Zhang, D. (2010). Kinetics of Shenhua coal liquefaction catalyzed by SO42=/ZrO2 solid acid. Fuel, 89(1), 67-72. doi:10.1016/j.fuel.2009.02.019
  • Snape, C. E. (1987). Characterisation of organic coal structure for liquefaction. Fuel Processing Technology, 15, 257-279. doi:10.1016/0378-3820(87)90050-6
  • Söğüt, F. (1997). UV ışınları ile linyitlerin desülfürizasyonu. PhD Thesis, Ankara University.
  • Söğüt, F., & Olcay, A. (1998). Dissolution of lignites in tetralin at ambient temperature: effects of ultraviolet irradiation. Fuel Processing Technology, 55(2), 107-115. doi:10.1016/S0378-3820(98)00045-9
  • Speight, J. G. (2008). Synthetic fuels handbook: properties, process and performance. The McGraw-Hill Companies, Inc.
  • Şimşek, E. H. (1997). Türk kömürlerinin mikrodalga enerji etkisiyle tetralindeki hidrojenasyonu. PhD Thesis, Ankara University.
  • Şimşek, E. H., Karaduman, A., & Olcay, A. (2001). Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy. Fuel, 80(15), 2181-2188. doi:10.1016/S00162361(01)00102-8
  • Şimşek, E. H., Güleç, F., & Kavuştu, H. (2017). Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models. Fuel, 207, 814-820. doi:10.1016/j.fuel.2017.06.004
  • Şimşek, E. H., Güleç, F., Kavuştu, H., & Karaduman, A. (2019). Determination of liquefaction mechanisms of Zonguldak, Soma and Beypazarı coals using discrete time models. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1), 79-88. doi:10.17341/gazimmfd.416464
  • Şimşek, E. H., Güleç, F., & Akçadağ, F. S. (2020). Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models. Fuel Processing Technology, 198, 106227. doi:10.1016/j.fuproc.2019.106227
  • Wang, Z., Shui, H., Zhu, Y., & Gao, J. (2009). Catalysis of SO42-/ZrO2 solid acid for the liquefaction of coal. Fuel 88, 885-889. doi:10.1016/j.fuel.2008.10.040
  • Wei, L., Jian, Z., Chunzhi, W., & Hui, X. (2013). Kalman filter Localization algorithm based on SDS-TWR ranging. TELKOMNIKA Indonesian Journal of Electrical Engineering, 11(3), 1436-48. doi:10.11591/telkomnika.v11i3.2225
  • Welch, G., & Bishop, G. (2006). An introduction to the Kalman filter (Technical Report: TR 95-041). University of North Carolina at Chapel Hill.
  • Yürüm, Y., & Yig̃insu, I. (1982). Depolymerization of Turkish lignites: 3. Effect of ultraviolet radiation. Fuel, 61(11), 1138-1140. doi:10.1016/0016-2361(82)90200-9
There are 41 citations in total.

Details

Primary Language English
Journal Section Chemical Engineering
Authors

Yelda Altınsoy 0000-0002-5277-6981

Emir Şimşek 0000-0001-7945-8222

Publication Date June 30, 2022
Submission Date April 15, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Altınsoy, Y., & Şimşek, E. (2022). Experimental and Modelling Comparison of the Effects of UV Energy on Liquefaction Efficiency in Coal Liquefaction Mechanism. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 136-155. https://doi.org/10.54287/gujsa.1104126