Research Article
BibTex RIS Cite

Investigation of Chloride Anion Binding Properties of Glipizide Drug

Year 2023, Volume: 10 Issue: 3, 262 - 277, 29.09.2023
https://doi.org/10.54287/gujsa.1281246

Abstract

This study addresses the anion binding property of Glipizide (GLP), an oral antidiabetic a second-generation drug member of the sulphonylurea (SU) family. GLP effectively interacts with Cl- anion according to 1H-NMR spectroscopic titrations of successive tetrabutylammonium chloride (TBACl) in deuterated chloroform (CDCl3) and dimethyl sulfoxide (d6-DMSO). Upon the addition of TBACl, the change in chemical shift was observed for both N-H protons of SU in CDCl3, whereas it causes a difference in the shift of only one of N-H proton in SU in d6-DMSO. In addition, the data obtained from 1H-NMR spectroscopic titrations was analyzed by DynaFit program to calculate the binding constant (Ka) value between GLP and Cl- anion. It was found that GLP binds Cl- anion in CDCl3 with higher affinity (Ka=77.37 M-1, Fitplot for N-Hh proton at δ=6.47 ppm) than in d6-DMSO (Ka=38.53 M-1, Fitplot for N-Hh proton at δ=6.32 ppm).

References

  • Adhikari, L., Jagadev, S., Sahoo, S., Murthy, P. N., & Mishra, U. S. (2012). Devlopement and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of pioglitazone Hydrochloride, Metformin Hydrochloride and Glipizide in its Bulk and Pharmaceutical Dosage Form (Tablet). International Journal of Chem Tech Research, 4(2), 625-630.
  • Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement IV, J. P., Boyd III, A. E., González, G., Herrera-Sosa, H., Nguy, K., Bryan, J., & Nelson, D. A. (1995). Cloning of the β Cell High-Affinity Sulfonylurea Receptor: a Regulator of Insulin Secretion. Science, 268(5209), 423-426. doi:10.1126/science.7716547
  • Ambadekar, S., & Keni, S. (2018). Fast and Economic Spectrophotometric Method for Metformin and Glipizide in Combination Tablet. International Journal of Advances in Science Engineering and Technology, 6(1), 31-35.
  • Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry, 16(14), 4368-4380. doi:10.1002/chem.200903190
  • Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry, 17(21), 5972-5981. doi:10.1002/chem.201003411
  • Anwer, R., AlQumaizi, K. I., Haque, S., Somvanshi, P., Ahmad, N., AlOsaimi, S. M., & Fatma, T. (2021). Unravelling the Interaction of Glipizide with Human Serum Albumin Using Various Spectroscopic Techniques and Molecular Dynamics Studies. Journal of Biomolecular Structure and Dynamics, 39(1), 336-347. doi:10.1080/07391102.2019.1711195
  • Bao, X., Wu, X., Berry, S. N., Howe, E. N. W., Chang, Y.-T., & Gale, P. A. (2018). Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chemical Communications, 54(11), 1363-1366. doi:10.1039/C7CC08706C
  • Barišić, D., Cindro, N., Vidović, N., Bregović, N., & Tomišić, V. (2021). Protonation and anion-binding properties of aromatic sulfonylurea derivatives. RSC Advances, 11(39), 23992-24000. doi:10.1039/D1RA04738H
  • Barišić, D., Lešić, F., Tireli Vlašić, M., Užarević, K., Bregović, N., & Tomišić, V. (2022). Anion Binding by receptors containing NH donating groups – What do anions prefer?. Tetrahedron, 120, 132875-132883. doi:10.1016/j.tet.2022.132875
  • Best, L., & Benington, S. (1998). Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic β-cells. British Journal of Pharmacology, 125(4), 874-878. doi:10.1038/sj.bjp.0702148
  • Best, L., Davies, S., & Brown, P. D. (2004). Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia, 47(11), 1990-1997. doi:10.1007/s00125-004-1559-4
  • Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/S0010-8545(02)00304-1
  • Brogden, R. N., Heel, R. C., Pakes, G. E., Speight, T. M., & Avery, G. S. (1979). Glipizide: A Review of its Pharmacological Properties and Therapeutic Use. Drugs, 18(5), 329-353 doi:10.2165/00003495-197918050-00001
  • Cai, X.-J., Li, Z., & Chen, W.-H. (2018). Synthesis, Anion Recognition and Transmembrane Anion-transport Properties of Squaramides and Their Derivatives. Mini-Reviews in Organic Chemistry, 15(2), 148-156. doi:10.2174/1570193X14666171114115629
  • Davis, A. P., Sheppard, D. N., & Smith, B. D. (2007). Development of synthetic membrane transporters for anions. Chemical Society Reviews, 36(2), 348-357. doi:10.1039/B512651G
  • Emami, J., Boushehri, M. S. S., & Varshosaz, J. (2014). Preparation, characterization and optimization of glipizide controlled release nanoparticles. Research in Pharmaceutical Sciences, 9(5), 301-314.
  • Ganesh, K., Nikitha, G., Sireesha, D., & Vasudha, B. (2016). Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Metformin and Glipizide in Tablet Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 1(2), 56-59. doi:10.21477/ijapsr.v1i2.10176
  • Gribble, F. M., & Reimann, F. (2002). Pharmacological modulation of KATP channels. Biochemical Society Transactions, 30(2), 333-339. doi:10.1042/bst0300333
  • Hasanah, A. N., Pessagno, F., Kartasasmita, R. E., Ibrahim, S., & Manesiotis, P. (2015). Tetrabutylammonium methacrylate as a novel receptor for selective extraction of sulphonylurea drugs from biological fluids using molecular imprinting. Journal of Materials Chemistry B, 3(43), 8577-8583. doi:10.1039/C5TB01512J
  • Hosogi, S., Kusuzaki, K., Inui, T., Wang, X., & Marunaka, Y. (2014). Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell. Journal of Cellular and Molecular Medicine, 18(6), 1124-1133. doi:10.1111/jcmm.12257
  • Huggins, M. T., Butler, T., Barber, P., & Hunt, J. (2009). Synthesis and molecular recognition studies of pyrrole sulfonamides. Chemical Communications, (35), 5254-5256. doi:10.1039/B911985J
  • Hussan, K. P. S., Rahoof, K. A. A., Medammal, Z., Thayyil, M. S., & Babu, T. D. (2022). Theoretical insights into the radical scavenging activity of glipizide: DFT and molecular docking studies. Free Radical Research, 56(1), 53-62. doi:10.1080/10715762.2022.2034803
  • Jena, B. R., Swain, S., Babu, S. M., Pradhan, D. P., & Sasikanth, K. (2017). UV spectrophotometric Method Development and Quantitative Estimation of Glipizide in Bulk and Pharmaceutical Dosage Forms. International Journal of Drug Research and Technology, 7(3), 112-122.
  • Kang, S. O., Begum, R. A., & Bowman-James, K. (2006). Amide-Based Ligands for Anion Coordination. Angewandte Chemie International Edition, 45(47), 7882-7894. doi:10.1002/anie.200602006
  • Kinard, T. A., & Satin, L. S. (1995). An ATP-Sensitive Cl- Channel Current That Is Activated by Cell Swelling, cAMP, and Glyburide in Insulin-Secreting Cells. Diabetes, 44(12), 1461-1466. doi:10.2337/diab.44.12.1461
  • Kumawat, L. K., Wynne, C., Cappello, E., Fisher, P., Brennan, L. E., Strofaldi, A., McManus, J. J., Hawes, C. S., Jolliffe, K. A., Gunnlaugsson, T., & Elmes, R. B. P. (2021). Squaramide-Based Self-Associating Amphiphiles for Anion Recognition. ChemPlusChem, 86(8), 1058-1068. doi:10.1002/cplu.202100275
  • Kuzmič, P. (2009). DynaFit-A Software Package for Enzymology. In: M. L. Johnson, & L. Brand (Eds.), Computer Methods Part B (Methods in Enzymology book series, vol. 467), (pp. 247-280). doi:10.1016/S0076-6879(09)67010-5
  • Lebovitz, H. E., & Feinglos, M. N. (1983). Mechanism of Action of the Second-Generation Sulfonylurea Glipizide. The American Journal of Medicine, 75(5), 46-54. doi:10.1016/0002-9343(83)90253-X
  • Li, A.-F., Wang, J.-H., Wang, F., & Jiang, Y.-B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 39(10), 3729-3745. doi:10.1039/B926160P
  • Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C., & Elmes, R. B. P. (2019). The Versatility of Squaramides: From Supramolecular Chemistry to Chemical Biology. Chem, 5(6), 1398-1485. doi:10.1016/j.chempr.2019.02.027
  • Martin, S. L., Saint-Criq, V., Hwang, T.-C., & Csanády, L. (2018). Ion channels as targets to treat cystic fibrosis lung disease. Journal of Cystic Fibrosis, 17(2), S22-S27. doi:10.1016/j.jcf.2017.10.006
  • Mercurio, J. M., Caballero, A., Cookson, J., & Beer, P. D. (2015). A halogen- and hydrogen-bonding [2]catenane for anion recognition and sensing. RSC Advances, 5(12), 9298-9306. doi:10.1039/C4RA15380D
  • Ming, X., Qi, Z.-C., Lian, H.-Z., & Wang, S.-K. (2008). Spectral Data Analyses and Structure Elucidation of Hypoglycemic Drug Glipizide. Instrumentation Science & Technology, 36(5), 503-514. doi:10.1080/10739140802234956
  • Norris, E. (1979). Glipizide, a new second-generation sulfonylurea. In: R. A. Camerini-Davalos, B. Hanover (Eds.), Treatment of EARLY DIABETES (Advances in Experimental Medicine and Biology book series, vol.119), (pp. 427-434). doi:10.1007/978-1-4615-9110-8_62
  • Pahwa, R., Bohra, P., Sharma, P. C., Kumar, V., & Dureja, H. (2010). Glipizide: Some Analytical, Clinical and Therapeutic Vistas. International Journal of Chemical Sciences, 8(1), 59-80.
  • Pessagno, F., Hasanah, A. N., & Manesiotis, P. (2018). Molecularly imprinted 'traps' for sulfonylureas prepared using polymerisable ion pairs. RSC Advances, 8(26), 14212-14220. doi:10.1039/C8RA01135D
  • Picci, G., Kubicki, M., Garau, A., Lippolis, V., Mocci, R., Porcheddu, A., Quesada, R., Ricci, P. C., Scorciapino, M. A., & Caltagirone, C. (2020). Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chemical Communications, 56(75), 11066-11069. doi:10.1039/D0CC04090H
  • Prakash, O., & Iqbal, S. A. (2015). FTIR, 1H NMR, mass spectral, XRD and thermal characterization studies of NdIII and SmIII complexes of glipizide: An oral antidiabetic drug. Journal of Indian Chemical Society, 92(1), 51-63. doi:10.5281/zenodo.5602962
  • Prasad, N., Issarani, R., & Nagori, B. P. (2013). Ultraviolet Spectrophotometric Method for Determination of Glipizide in Presence of Liposomal/Proliposomal Turbidity. Journal of Spectroscopy, 2013, 836372. doi:10.1155/2013/836372
  • Qi, C., Zhou, Q., Li, B., Yang, Y., Cao, L., Ye, Y., Li, J., Ding, Y., Wang, H., Wang, J., He, X., Zhang, Q., Lan, T., Ka Ho Lee, K., Li, W., Song, X., Zhou, J., Yang, X., & Wang, L. (2014). Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget, 5(20), 9966-9979. doi:10.18632/oncotarget.2483
  • Ramalingam, V., Domaradzki, M. E., Jang, S., & Muthyala, R. S. (2008). Carbonyl Groups as Molecular Valves to Regulate Chloride Binding to Squaramides. Organic Letters, 10(15), 3315-3318. doi:10.1021/ol801204s
  • Renström, E., Barg, S., Thévenod, F., & Rorsman, P. (2002). Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-sensitive K+ Channel-Independent Action. Diabetes, 51(1), S33-S36. doi:10.2337/diabetes.51.2007.S33
  • Rowe, S. M., Miller, S., & Sorscher, E. J. (2005). Cystic Fibrosis. New England Journal of Medicine, 352(19), 1992-2001. doi:10.1056/NEJMra043184
  • Sehlin, J. (1981). Are Cl- Mechanisms in Mouse Pancreatic Islets involved in Insulin Release?. Upsala Journal of Medical Sciences, 86(2), 177-182. doi:10.3109/03009738109179226
  • Shuman, C. R. (1983). Glipizide: An Overview. The American Journal of Medicine, 75(5), 55-59. doi:10.1016/0002-9343(83)90254-1
  • Thordarson, P. (2011). Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews, 40(3), 1305-1323 doi:10.1039/C0CS00062K
  • Ulatowski, F., Dabrowa, K., Balakier, T., & Jurczak, J. (2016). Recognizing the Limited Applicability of Job Plots in Studying Host-Guest Interactions in Supramolecular Chemistry. The Journal of Organic Chemistry, 81(5), 1746-1756. doi:10.1021/acs.joc.5b02909
  • Valdivieso, A. G., & Santa-Coloma, T. A. (2019). The chloride anion as a signaling effector. Biological Reviews, 94(5), 1839-1856. doi:10.1111/brv.12536
  • Zapata, F., Benítez-Benítez, S. J., Sabater, P., Caballero, A., & Molina, P. (2017). Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions. Molecules, 22(12), 2273. doi:10.3390/molecules22122273
Year 2023, Volume: 10 Issue: 3, 262 - 277, 29.09.2023
https://doi.org/10.54287/gujsa.1281246

Abstract

References

  • Adhikari, L., Jagadev, S., Sahoo, S., Murthy, P. N., & Mishra, U. S. (2012). Devlopement and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of pioglitazone Hydrochloride, Metformin Hydrochloride and Glipizide in its Bulk and Pharmaceutical Dosage Form (Tablet). International Journal of Chem Tech Research, 4(2), 625-630.
  • Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement IV, J. P., Boyd III, A. E., González, G., Herrera-Sosa, H., Nguy, K., Bryan, J., & Nelson, D. A. (1995). Cloning of the β Cell High-Affinity Sulfonylurea Receptor: a Regulator of Insulin Secretion. Science, 268(5209), 423-426. doi:10.1126/science.7716547
  • Ambadekar, S., & Keni, S. (2018). Fast and Economic Spectrophotometric Method for Metformin and Glipizide in Combination Tablet. International Journal of Advances in Science Engineering and Technology, 6(1), 31-35.
  • Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry, 16(14), 4368-4380. doi:10.1002/chem.200903190
  • Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry, 17(21), 5972-5981. doi:10.1002/chem.201003411
  • Anwer, R., AlQumaizi, K. I., Haque, S., Somvanshi, P., Ahmad, N., AlOsaimi, S. M., & Fatma, T. (2021). Unravelling the Interaction of Glipizide with Human Serum Albumin Using Various Spectroscopic Techniques and Molecular Dynamics Studies. Journal of Biomolecular Structure and Dynamics, 39(1), 336-347. doi:10.1080/07391102.2019.1711195
  • Bao, X., Wu, X., Berry, S. N., Howe, E. N. W., Chang, Y.-T., & Gale, P. A. (2018). Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chemical Communications, 54(11), 1363-1366. doi:10.1039/C7CC08706C
  • Barišić, D., Cindro, N., Vidović, N., Bregović, N., & Tomišić, V. (2021). Protonation and anion-binding properties of aromatic sulfonylurea derivatives. RSC Advances, 11(39), 23992-24000. doi:10.1039/D1RA04738H
  • Barišić, D., Lešić, F., Tireli Vlašić, M., Užarević, K., Bregović, N., & Tomišić, V. (2022). Anion Binding by receptors containing NH donating groups – What do anions prefer?. Tetrahedron, 120, 132875-132883. doi:10.1016/j.tet.2022.132875
  • Best, L., & Benington, S. (1998). Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic β-cells. British Journal of Pharmacology, 125(4), 874-878. doi:10.1038/sj.bjp.0702148
  • Best, L., Davies, S., & Brown, P. D. (2004). Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia, 47(11), 1990-1997. doi:10.1007/s00125-004-1559-4
  • Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/S0010-8545(02)00304-1
  • Brogden, R. N., Heel, R. C., Pakes, G. E., Speight, T. M., & Avery, G. S. (1979). Glipizide: A Review of its Pharmacological Properties and Therapeutic Use. Drugs, 18(5), 329-353 doi:10.2165/00003495-197918050-00001
  • Cai, X.-J., Li, Z., & Chen, W.-H. (2018). Synthesis, Anion Recognition and Transmembrane Anion-transport Properties of Squaramides and Their Derivatives. Mini-Reviews in Organic Chemistry, 15(2), 148-156. doi:10.2174/1570193X14666171114115629
  • Davis, A. P., Sheppard, D. N., & Smith, B. D. (2007). Development of synthetic membrane transporters for anions. Chemical Society Reviews, 36(2), 348-357. doi:10.1039/B512651G
  • Emami, J., Boushehri, M. S. S., & Varshosaz, J. (2014). Preparation, characterization and optimization of glipizide controlled release nanoparticles. Research in Pharmaceutical Sciences, 9(5), 301-314.
  • Ganesh, K., Nikitha, G., Sireesha, D., & Vasudha, B. (2016). Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Metformin and Glipizide in Tablet Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 1(2), 56-59. doi:10.21477/ijapsr.v1i2.10176
  • Gribble, F. M., & Reimann, F. (2002). Pharmacological modulation of KATP channels. Biochemical Society Transactions, 30(2), 333-339. doi:10.1042/bst0300333
  • Hasanah, A. N., Pessagno, F., Kartasasmita, R. E., Ibrahim, S., & Manesiotis, P. (2015). Tetrabutylammonium methacrylate as a novel receptor for selective extraction of sulphonylurea drugs from biological fluids using molecular imprinting. Journal of Materials Chemistry B, 3(43), 8577-8583. doi:10.1039/C5TB01512J
  • Hosogi, S., Kusuzaki, K., Inui, T., Wang, X., & Marunaka, Y. (2014). Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell. Journal of Cellular and Molecular Medicine, 18(6), 1124-1133. doi:10.1111/jcmm.12257
  • Huggins, M. T., Butler, T., Barber, P., & Hunt, J. (2009). Synthesis and molecular recognition studies of pyrrole sulfonamides. Chemical Communications, (35), 5254-5256. doi:10.1039/B911985J
  • Hussan, K. P. S., Rahoof, K. A. A., Medammal, Z., Thayyil, M. S., & Babu, T. D. (2022). Theoretical insights into the radical scavenging activity of glipizide: DFT and molecular docking studies. Free Radical Research, 56(1), 53-62. doi:10.1080/10715762.2022.2034803
  • Jena, B. R., Swain, S., Babu, S. M., Pradhan, D. P., & Sasikanth, K. (2017). UV spectrophotometric Method Development and Quantitative Estimation of Glipizide in Bulk and Pharmaceutical Dosage Forms. International Journal of Drug Research and Technology, 7(3), 112-122.
  • Kang, S. O., Begum, R. A., & Bowman-James, K. (2006). Amide-Based Ligands for Anion Coordination. Angewandte Chemie International Edition, 45(47), 7882-7894. doi:10.1002/anie.200602006
  • Kinard, T. A., & Satin, L. S. (1995). An ATP-Sensitive Cl- Channel Current That Is Activated by Cell Swelling, cAMP, and Glyburide in Insulin-Secreting Cells. Diabetes, 44(12), 1461-1466. doi:10.2337/diab.44.12.1461
  • Kumawat, L. K., Wynne, C., Cappello, E., Fisher, P., Brennan, L. E., Strofaldi, A., McManus, J. J., Hawes, C. S., Jolliffe, K. A., Gunnlaugsson, T., & Elmes, R. B. P. (2021). Squaramide-Based Self-Associating Amphiphiles for Anion Recognition. ChemPlusChem, 86(8), 1058-1068. doi:10.1002/cplu.202100275
  • Kuzmič, P. (2009). DynaFit-A Software Package for Enzymology. In: M. L. Johnson, & L. Brand (Eds.), Computer Methods Part B (Methods in Enzymology book series, vol. 467), (pp. 247-280). doi:10.1016/S0076-6879(09)67010-5
  • Lebovitz, H. E., & Feinglos, M. N. (1983). Mechanism of Action of the Second-Generation Sulfonylurea Glipizide. The American Journal of Medicine, 75(5), 46-54. doi:10.1016/0002-9343(83)90253-X
  • Li, A.-F., Wang, J.-H., Wang, F., & Jiang, Y.-B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 39(10), 3729-3745. doi:10.1039/B926160P
  • Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C., & Elmes, R. B. P. (2019). The Versatility of Squaramides: From Supramolecular Chemistry to Chemical Biology. Chem, 5(6), 1398-1485. doi:10.1016/j.chempr.2019.02.027
  • Martin, S. L., Saint-Criq, V., Hwang, T.-C., & Csanády, L. (2018). Ion channels as targets to treat cystic fibrosis lung disease. Journal of Cystic Fibrosis, 17(2), S22-S27. doi:10.1016/j.jcf.2017.10.006
  • Mercurio, J. M., Caballero, A., Cookson, J., & Beer, P. D. (2015). A halogen- and hydrogen-bonding [2]catenane for anion recognition and sensing. RSC Advances, 5(12), 9298-9306. doi:10.1039/C4RA15380D
  • Ming, X., Qi, Z.-C., Lian, H.-Z., & Wang, S.-K. (2008). Spectral Data Analyses and Structure Elucidation of Hypoglycemic Drug Glipizide. Instrumentation Science & Technology, 36(5), 503-514. doi:10.1080/10739140802234956
  • Norris, E. (1979). Glipizide, a new second-generation sulfonylurea. In: R. A. Camerini-Davalos, B. Hanover (Eds.), Treatment of EARLY DIABETES (Advances in Experimental Medicine and Biology book series, vol.119), (pp. 427-434). doi:10.1007/978-1-4615-9110-8_62
  • Pahwa, R., Bohra, P., Sharma, P. C., Kumar, V., & Dureja, H. (2010). Glipizide: Some Analytical, Clinical and Therapeutic Vistas. International Journal of Chemical Sciences, 8(1), 59-80.
  • Pessagno, F., Hasanah, A. N., & Manesiotis, P. (2018). Molecularly imprinted 'traps' for sulfonylureas prepared using polymerisable ion pairs. RSC Advances, 8(26), 14212-14220. doi:10.1039/C8RA01135D
  • Picci, G., Kubicki, M., Garau, A., Lippolis, V., Mocci, R., Porcheddu, A., Quesada, R., Ricci, P. C., Scorciapino, M. A., & Caltagirone, C. (2020). Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chemical Communications, 56(75), 11066-11069. doi:10.1039/D0CC04090H
  • Prakash, O., & Iqbal, S. A. (2015). FTIR, 1H NMR, mass spectral, XRD and thermal characterization studies of NdIII and SmIII complexes of glipizide: An oral antidiabetic drug. Journal of Indian Chemical Society, 92(1), 51-63. doi:10.5281/zenodo.5602962
  • Prasad, N., Issarani, R., & Nagori, B. P. (2013). Ultraviolet Spectrophotometric Method for Determination of Glipizide in Presence of Liposomal/Proliposomal Turbidity. Journal of Spectroscopy, 2013, 836372. doi:10.1155/2013/836372
  • Qi, C., Zhou, Q., Li, B., Yang, Y., Cao, L., Ye, Y., Li, J., Ding, Y., Wang, H., Wang, J., He, X., Zhang, Q., Lan, T., Ka Ho Lee, K., Li, W., Song, X., Zhou, J., Yang, X., & Wang, L. (2014). Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget, 5(20), 9966-9979. doi:10.18632/oncotarget.2483
  • Ramalingam, V., Domaradzki, M. E., Jang, S., & Muthyala, R. S. (2008). Carbonyl Groups as Molecular Valves to Regulate Chloride Binding to Squaramides. Organic Letters, 10(15), 3315-3318. doi:10.1021/ol801204s
  • Renström, E., Barg, S., Thévenod, F., & Rorsman, P. (2002). Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-sensitive K+ Channel-Independent Action. Diabetes, 51(1), S33-S36. doi:10.2337/diabetes.51.2007.S33
  • Rowe, S. M., Miller, S., & Sorscher, E. J. (2005). Cystic Fibrosis. New England Journal of Medicine, 352(19), 1992-2001. doi:10.1056/NEJMra043184
  • Sehlin, J. (1981). Are Cl- Mechanisms in Mouse Pancreatic Islets involved in Insulin Release?. Upsala Journal of Medical Sciences, 86(2), 177-182. doi:10.3109/03009738109179226
  • Shuman, C. R. (1983). Glipizide: An Overview. The American Journal of Medicine, 75(5), 55-59. doi:10.1016/0002-9343(83)90254-1
  • Thordarson, P. (2011). Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews, 40(3), 1305-1323 doi:10.1039/C0CS00062K
  • Ulatowski, F., Dabrowa, K., Balakier, T., & Jurczak, J. (2016). Recognizing the Limited Applicability of Job Plots in Studying Host-Guest Interactions in Supramolecular Chemistry. The Journal of Organic Chemistry, 81(5), 1746-1756. doi:10.1021/acs.joc.5b02909
  • Valdivieso, A. G., & Santa-Coloma, T. A. (2019). The chloride anion as a signaling effector. Biological Reviews, 94(5), 1839-1856. doi:10.1111/brv.12536
  • Zapata, F., Benítez-Benítez, S. J., Sabater, P., Caballero, A., & Molina, P. (2017). Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions. Molecules, 22(12), 2273. doi:10.3390/molecules22122273
There are 49 citations in total.

Details

Primary Language English
Subjects Organic Chemistry (Other)
Journal Section Chemistry
Authors

Serap Mert 0000-0001-5939-5295

Early Pub Date August 22, 2023
Publication Date September 29, 2023
Submission Date April 11, 2023
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

APA Mert, S. (2023). Investigation of Chloride Anion Binding Properties of Glipizide Drug. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 262-277. https://doi.org/10.54287/gujsa.1281246