Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 4, 524 - 541, 31.12.2023
https://doi.org/10.54287/gujsa.1357247

Abstract

Project Number

120N520

References

  • Adothu, B., Costa, F. R., & Mallick, S. (2021). Damp heat resilient thermoplastic polyolefin encapsulant for photovoltaic module encapsulation. Solar Energy Materials and Solar Cells, 224, 111024. https://www.doi.org/10.1016/j.solmat.2021.111024
  • Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Reinders, A., Schmitz, J., Theelen, M., Yilmaz, P., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. https://www.doi.org/10.1016/j.rser.2022.112160
  • Çabuk, A. S. (2022). Comparison of innovative and traditional method for optimizing the efficiency of photovoltaic panels. International Journal of Energy Applications and Technologies, 9(2), 45-49. https://www.doi.org/10.31593/ijeat.1082277
  • EEA (European Environmental Agency). (2023). Turkey shapefile. (Accessed:27/07/2023) URL:https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/gis-files/turkey-shapefile
  • Er, Z. (2023). Solar Radiation Forecasts and a Tiny House PV Off-Grid System. Avrupa Bilim ve Teknoloji Dergisi, (47), 7-12. https://www.doi.org/10.31590/ejosat.1234216
  • Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 16(4), 307-315. https://www.doi.org/10.1002/pip.813
  • Fan, J., Qian, Z., & Wang, J. (2018, November 6-8). Photovoltaic Modules Power Degradation and Lifetime Prediction under Accelerated Damp-heat Conditions Based on Gamma Process. In: Proceedings of the International Conference on Power System Technology (POWERCON), (pp. 93-100). https://www.doi.org/10.1109/POWERCON.2018.8601560
  • Gok, A., Gordon, D. A., Wang, M., French, R. H., & Bruckman, L. S. (2019). Degradation Science and Pathways in PV Systems. In: H. Yang, L. S. Bruckman, & R. H. French (Eds.), Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (pp. 47-95). William Andrew Publishing. https://www.doi.org/10.1016/B978-0-12-811545-9.00003-3
  • GSES (Global Sustainable Energy Solutions). (2023). Recycling Solar Panels. (Accessed:27/07/2023) URL:https://www.gses.com.au/recycling-pv-modules/
  • Hülsmann, P., & Weiss, K.-A. (2015). Simulation of water ingress into PV-modules: IEC-testing versus outdoor exposure. Solar Energy, 115, 347-353. https://www.doi.org/10.1016/j.solener.2015.03.007
  • IEA PVPS. (2014). Review of Failures of Photovoltaic Modules (No. IEA-PVPS T13-01:2014). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). (Accessed:27/07/2023) URL:http://www.iea-pvps.org/index.php?id=275
  • IEA PVPS. (2022). Trends in Photovoltaic Applications 2022 (No. IEA PVPS T1-43:2022). International Energy Agency (IEA). (Accessed:27/07/2023) URL:https://iea-pvps.org/trends_reports/trends-2022/
  • IEA PVPS. (2023). Snapshot of Global PV Markets 2023 (No. IEA-PVPS T1-44:2023). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). (Accessed:27/07/2023) URL:https://iea-pvps.org/snapshot-reports/snapshot-2023/
  • IEC (International Electrotechnical Society). (2021). IEC 61215-2:2021: Terrestrial photovoltaic (PV) modules—Design qualification and type approval—Part 2: Test procedures. (Accessed:27/07/2023) URL:https://webstore.iec.ch/publication/61350
  • Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. https://www.doi.org/10.1007/BF02289588
  • Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R., & VanSant, K. T. (2017). Photovoltaic failure and degradation modes. Progress in Photovoltaics: Research and Applications, 25(4), 318-326. https://www.doi.org/10.1002/pip.2866
  • Kempe, M. D., Panchagade, D., Reese, M. O., & Dameron, A. A. (2015). Modeling moisture ingress through polyisobutylene-based edge-seals: Polyisobutylene-based edge-seals. Progress in Photovoltaics: Research and Applications, 23(5), 570-581. https://www.doi.org/10.1002/pip.2465
  • Kempe, M. D., & Wohlgemuth, J. H. (2013, June 16-21). Evaluation of temperature and humidity on PV module component degradation. In: Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), (pp. 0120-0125). https://www.doi.org/10.1109/PVSC.2013.6744112
  • Kimball, G. M., Yang, S., & Saproo, A. (2016, June 5-10). Global acceleration factors for damp heat tests of PV modules. In: Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), (pp. 0101-0105). https://www.doi.org/10.1109/PVSC.2016.7749557
  • Koehl, M., Heck, M., & Wiesmeier, S. (2012). Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data. Solar Energy Materials and Solar Cells, 99, 282-291. https://www.doi.org/10.1016/j.solmat.2011.12.011
  • Koehl, M., Hoffmann, S., & Wiesmeier, S. (2017). Evaluation of damp-heat testing of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25(2), 175-183. https://www.doi.org/10.1002/pip.2842
  • Laronde, R., Charki, A., & Bigaud, D. (2012). Lifetime Estimation of a Photovoltaic Module Subjected to Corrosion Due to Damp Heat Testing. Journal of Solar Energy Engineering, 135(021010). https://www.doi.org/10.1115/1.4023101
  • López-Escalante, M. C., Fernández-Rodríguez, M., Caballero, L. J., Martín, F., Gabás, M., & Ramos-Barrado, J. R. (2018). Novel encapsulant architecture on the road to photovoltaic module power output increase. Applied Energy, 228, 1901-1910. https://www.doi.org/10.1016/j.apenergy.2018.07.073
  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. https://www.doi.org/10.2113/gsecongeo.58.8.1246
  • Oreski, G., Omazic, A., Eder, G. C., Voronko, Y., Neumaier, L., Mühleisen, W., Hirschl, C., Ujvari, G., Ebner, R., & Edler, M. (2020). Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules. Progress in Photovoltaics: Research and Applications, 28(12), 1277-1288. https://www.doi.org/10.1002/pip.3323
  • Oreski, G., Ottersböck, B., & Omazic, A. (2019). Degradation processes and mechanisms of encapsulants. In: H. E. Yang, R. H. French, & L. S. Bruckman (Eds.), Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (pp. 135-152). William Andrew Publishing. https://www.doi.org/10.1016/B978-0-12-811545-9.00006-9
  • Osterwald, C. R., & McMahon, T. J. (2009). History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. Progress in Photovoltaics: Research and Applications, 17(1), 11-33. https://www.doi.org/10.1002/pip.861
  • Pickett, J. E. (2015). Hydrolysis Kinetics and Lifetime Prediction for Polycarbonate and Polyesters in Solar Energy Applications. In: C. C. White, J. Martin, & J. T. Chapin (Eds.), Service Life Prediction of Exterior Plastics (pp. 41-58). Cham: Springer International Publishing. https://www.doi.org/10.1007/978-3-319-06034-7_3
  • PVGIS (Photovoltaic Geographical Information System). (2023). (Accessed:27/07/2023) URL:https://re.jrc.ec.europa.eu/pvg_tools/en/
  • QGIS. (2023). Open Source Geographic Information System (GIS). (Accessed:27/07/2023) URL:https://qgis.org/
  • Reisner, E. U., Stollwerck, G., Peerlings, H., & Shafiq, F. (2006). Humidity in a Solar Module—Horror Vision or Negligible? 2058-2060. Dresden, Germany.
  • Salmanoğlu, F., & Çeti̇n, N. S. (2022). An Approach on Developing a Dynamic Wind-Solar Map for Tracking Electricity Production Potential and Energy Harvest. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 62-78. https://www.doi.org/10.54287/gujsa.1085005
  • Tirmikçi, C. A., Yavuz, C., & Gümüş, T. E. (2021). Investigating the Effects of Temperature and Relative Humidity on Performance Ratio of a Grid Connected Photovoltaic System. Academic Platform - Journal of Engineering and Science, 9(3), 427-432. https://www.doi.org/10.21541/apjes.894390
  • Turan, V., Karakuş, C., & Üstün, İ. (2023). Installation of solar power plant in Adıyaman region and analysis of solar energy potential. International Journal of Energy Applications and Technologies, 10(1), 21-25.
  • Watson, D. F., & Philip, G. M. (1985). A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing, 2(4), 315-327.
  • Weiß, K.-A., Klimm, E., & Kaaya, I. (2022). Accelerated aging tests vs field performance of PV modules. Progress in Energy, 4(4), 042009. https://www.doi.org/10.1088/2516-1083/ac890a
  • Whitfield, K., Salomon, A., Yang, S., & Suez, I. (2012, June 3-8). Damp heat versus field reliability for crystalline silicon. In: Proceedings of the 38th IEEE Photovoltaic Specialists Conference, (pp. 001864-001870). https://www.doi.org/10.1109/PVSC.2012.6317957
  • Wohlgemuth, J. H., & Kempe, M. D. (2013, June 16-21). Equating damp heat testing with field failures of PV modules. In: Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), (pp. 0126-0131). Tampa, FL, USA: IEEE. https://www.doi.org/10.1109/PVSC.2013.6744113

Investigation of the Turkey’s Climate for Service Lifetime of Photovoltaic Modules: A Mapping Approach

Year 2023, Volume: 10 Issue: 4, 524 - 541, 31.12.2023
https://doi.org/10.54287/gujsa.1357247

Abstract

The longevity of photovoltaic systems during real-world operation is a concern that needs to be addressed. Polymeric materials used in module constructions, particularly encapsulants, are susceptible to hydrolysis, which can lead to cell metallization corrosion and result in power loss and shortened service lifetime. One of the test protocols within the current certification standard of IEC 61215 is damp heat exposure, which subjects the modules to constant temperature and humidity level for a specific duration (85°C/85%RH for 1000 hours). However, its effectiveness as a reliability test for long-term durability is often debated. This study applies a methodology for calculating the equivalent damp heat testing time that corresponds to a targeted service lifetime (i.e., 30 years) in real-world conditions. The results are presented in the form of a country map, focusing on Turkey, illustrating the variations in testing times across different regions due to local climate conditions. This study shows that applying a single set of conditions for a fixed duration, as applied in the damp heat testing, to all modules with different components and for all climate conditions poses substantial risks when it comes to predicting service lifetime.

Ethical Statement

I confirm that the research and manuscript meet the ethical guidelines outlined in the journal's author guidelines, including adherence to the legal requirements of the study country.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

120N520

Thanks

This work is conducted as part of the Solar-Era.NET project: PV40+ and supported by the funding from The Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No: 120N520.

References

  • Adothu, B., Costa, F. R., & Mallick, S. (2021). Damp heat resilient thermoplastic polyolefin encapsulant for photovoltaic module encapsulation. Solar Energy Materials and Solar Cells, 224, 111024. https://www.doi.org/10.1016/j.solmat.2021.111024
  • Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Reinders, A., Schmitz, J., Theelen, M., Yilmaz, P., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. https://www.doi.org/10.1016/j.rser.2022.112160
  • Çabuk, A. S. (2022). Comparison of innovative and traditional method for optimizing the efficiency of photovoltaic panels. International Journal of Energy Applications and Technologies, 9(2), 45-49. https://www.doi.org/10.31593/ijeat.1082277
  • EEA (European Environmental Agency). (2023). Turkey shapefile. (Accessed:27/07/2023) URL:https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/gis-files/turkey-shapefile
  • Er, Z. (2023). Solar Radiation Forecasts and a Tiny House PV Off-Grid System. Avrupa Bilim ve Teknoloji Dergisi, (47), 7-12. https://www.doi.org/10.31590/ejosat.1234216
  • Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 16(4), 307-315. https://www.doi.org/10.1002/pip.813
  • Fan, J., Qian, Z., & Wang, J. (2018, November 6-8). Photovoltaic Modules Power Degradation and Lifetime Prediction under Accelerated Damp-heat Conditions Based on Gamma Process. In: Proceedings of the International Conference on Power System Technology (POWERCON), (pp. 93-100). https://www.doi.org/10.1109/POWERCON.2018.8601560
  • Gok, A., Gordon, D. A., Wang, M., French, R. H., & Bruckman, L. S. (2019). Degradation Science and Pathways in PV Systems. In: H. Yang, L. S. Bruckman, & R. H. French (Eds.), Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (pp. 47-95). William Andrew Publishing. https://www.doi.org/10.1016/B978-0-12-811545-9.00003-3
  • GSES (Global Sustainable Energy Solutions). (2023). Recycling Solar Panels. (Accessed:27/07/2023) URL:https://www.gses.com.au/recycling-pv-modules/
  • Hülsmann, P., & Weiss, K.-A. (2015). Simulation of water ingress into PV-modules: IEC-testing versus outdoor exposure. Solar Energy, 115, 347-353. https://www.doi.org/10.1016/j.solener.2015.03.007
  • IEA PVPS. (2014). Review of Failures of Photovoltaic Modules (No. IEA-PVPS T13-01:2014). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). (Accessed:27/07/2023) URL:http://www.iea-pvps.org/index.php?id=275
  • IEA PVPS. (2022). Trends in Photovoltaic Applications 2022 (No. IEA PVPS T1-43:2022). International Energy Agency (IEA). (Accessed:27/07/2023) URL:https://iea-pvps.org/trends_reports/trends-2022/
  • IEA PVPS. (2023). Snapshot of Global PV Markets 2023 (No. IEA-PVPS T1-44:2023). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). (Accessed:27/07/2023) URL:https://iea-pvps.org/snapshot-reports/snapshot-2023/
  • IEC (International Electrotechnical Society). (2021). IEC 61215-2:2021: Terrestrial photovoltaic (PV) modules—Design qualification and type approval—Part 2: Test procedures. (Accessed:27/07/2023) URL:https://webstore.iec.ch/publication/61350
  • Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. https://www.doi.org/10.1007/BF02289588
  • Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R., & VanSant, K. T. (2017). Photovoltaic failure and degradation modes. Progress in Photovoltaics: Research and Applications, 25(4), 318-326. https://www.doi.org/10.1002/pip.2866
  • Kempe, M. D., Panchagade, D., Reese, M. O., & Dameron, A. A. (2015). Modeling moisture ingress through polyisobutylene-based edge-seals: Polyisobutylene-based edge-seals. Progress in Photovoltaics: Research and Applications, 23(5), 570-581. https://www.doi.org/10.1002/pip.2465
  • Kempe, M. D., & Wohlgemuth, J. H. (2013, June 16-21). Evaluation of temperature and humidity on PV module component degradation. In: Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), (pp. 0120-0125). https://www.doi.org/10.1109/PVSC.2013.6744112
  • Kimball, G. M., Yang, S., & Saproo, A. (2016, June 5-10). Global acceleration factors for damp heat tests of PV modules. In: Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), (pp. 0101-0105). https://www.doi.org/10.1109/PVSC.2016.7749557
  • Koehl, M., Heck, M., & Wiesmeier, S. (2012). Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data. Solar Energy Materials and Solar Cells, 99, 282-291. https://www.doi.org/10.1016/j.solmat.2011.12.011
  • Koehl, M., Hoffmann, S., & Wiesmeier, S. (2017). Evaluation of damp-heat testing of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25(2), 175-183. https://www.doi.org/10.1002/pip.2842
  • Laronde, R., Charki, A., & Bigaud, D. (2012). Lifetime Estimation of a Photovoltaic Module Subjected to Corrosion Due to Damp Heat Testing. Journal of Solar Energy Engineering, 135(021010). https://www.doi.org/10.1115/1.4023101
  • López-Escalante, M. C., Fernández-Rodríguez, M., Caballero, L. J., Martín, F., Gabás, M., & Ramos-Barrado, J. R. (2018). Novel encapsulant architecture on the road to photovoltaic module power output increase. Applied Energy, 228, 1901-1910. https://www.doi.org/10.1016/j.apenergy.2018.07.073
  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. https://www.doi.org/10.2113/gsecongeo.58.8.1246
  • Oreski, G., Omazic, A., Eder, G. C., Voronko, Y., Neumaier, L., Mühleisen, W., Hirschl, C., Ujvari, G., Ebner, R., & Edler, M. (2020). Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules. Progress in Photovoltaics: Research and Applications, 28(12), 1277-1288. https://www.doi.org/10.1002/pip.3323
  • Oreski, G., Ottersböck, B., & Omazic, A. (2019). Degradation processes and mechanisms of encapsulants. In: H. E. Yang, R. H. French, & L. S. Bruckman (Eds.), Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (pp. 135-152). William Andrew Publishing. https://www.doi.org/10.1016/B978-0-12-811545-9.00006-9
  • Osterwald, C. R., & McMahon, T. J. (2009). History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. Progress in Photovoltaics: Research and Applications, 17(1), 11-33. https://www.doi.org/10.1002/pip.861
  • Pickett, J. E. (2015). Hydrolysis Kinetics and Lifetime Prediction for Polycarbonate and Polyesters in Solar Energy Applications. In: C. C. White, J. Martin, & J. T. Chapin (Eds.), Service Life Prediction of Exterior Plastics (pp. 41-58). Cham: Springer International Publishing. https://www.doi.org/10.1007/978-3-319-06034-7_3
  • PVGIS (Photovoltaic Geographical Information System). (2023). (Accessed:27/07/2023) URL:https://re.jrc.ec.europa.eu/pvg_tools/en/
  • QGIS. (2023). Open Source Geographic Information System (GIS). (Accessed:27/07/2023) URL:https://qgis.org/
  • Reisner, E. U., Stollwerck, G., Peerlings, H., & Shafiq, F. (2006). Humidity in a Solar Module—Horror Vision or Negligible? 2058-2060. Dresden, Germany.
  • Salmanoğlu, F., & Çeti̇n, N. S. (2022). An Approach on Developing a Dynamic Wind-Solar Map for Tracking Electricity Production Potential and Energy Harvest. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 62-78. https://www.doi.org/10.54287/gujsa.1085005
  • Tirmikçi, C. A., Yavuz, C., & Gümüş, T. E. (2021). Investigating the Effects of Temperature and Relative Humidity on Performance Ratio of a Grid Connected Photovoltaic System. Academic Platform - Journal of Engineering and Science, 9(3), 427-432. https://www.doi.org/10.21541/apjes.894390
  • Turan, V., Karakuş, C., & Üstün, İ. (2023). Installation of solar power plant in Adıyaman region and analysis of solar energy potential. International Journal of Energy Applications and Technologies, 10(1), 21-25.
  • Watson, D. F., & Philip, G. M. (1985). A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing, 2(4), 315-327.
  • Weiß, K.-A., Klimm, E., & Kaaya, I. (2022). Accelerated aging tests vs field performance of PV modules. Progress in Energy, 4(4), 042009. https://www.doi.org/10.1088/2516-1083/ac890a
  • Whitfield, K., Salomon, A., Yang, S., & Suez, I. (2012, June 3-8). Damp heat versus field reliability for crystalline silicon. In: Proceedings of the 38th IEEE Photovoltaic Specialists Conference, (pp. 001864-001870). https://www.doi.org/10.1109/PVSC.2012.6317957
  • Wohlgemuth, J. H., & Kempe, M. D. (2013, June 16-21). Equating damp heat testing with field failures of PV modules. In: Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), (pp. 0126-0131). Tampa, FL, USA: IEEE. https://www.doi.org/10.1109/PVSC.2013.6744113
There are 38 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Metallurgical and Materials Engineering
Authors

Abdülkerim Gök 0000-0003-3433-7106

Project Number 120N520
Publication Date December 31, 2023
Submission Date September 8, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

APA Gök, A. (2023). Investigation of the Turkey’s Climate for Service Lifetime of Photovoltaic Modules: A Mapping Approach. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 524-541. https://doi.org/10.54287/gujsa.1357247