Research Article
BibTex RIS Cite

7075 Al Alaşımına Uygulanan Kriyojenik ve Doğal Yaşlandırma İşleminin Avrami Parametresine Etkisi

Year 2022, , 691 - 698, 30.12.2022
https://doi.org/10.29109/gujsc.1179514

Abstract

Bu çalışmada 7075 Al alaşımı çözeltiye alma ısıl işleminden sonra -40 °C de 2 saat kriyojenik işlem uygulanıp oda sıcaklığında 10 ve 100 gün yaşlandırma ısıl işlemi yapılmıştır. Diğer numuneler ise kriyojenik işlem uygulamadan doğal yaşlanma işlemi 10 ve 100 gün yapılmıştır. Her numune doğal yaşlanma işleminden sonra differential scanning calorimetry (DSC) ile analiz edilmiştir. Analizler sonucu ana mukavemetlenme fazı olarak bilinen yarı kararlı η′ fazının (MgZn2) dönüşüm eğrileri bulunmuştur. Johnson-Mehl-Avrami (JMA) ve Ozawa eşitliği ile avrami parametreleri (n) hesaplanmıştır. Hesaplamalar sonuncunda elde edilecek olan avrami parametresi ile dönüşümün gerçekleştiği fazın kaç boyutta büyüme ve çekirdeklenme gösterdiği araştırılmıştır. Sonuç olarak kriyojenik işlem sonrası 10 gün doğal yaşlandırma yapılan numunenin iki boyutta büyüdüğünü ve hacimsel çekirdeklendiğini göstermiştir. Sadece doğal yaşlanan numunelerin ve kriyojenik işlem sonrası 100 gün doğal yaşlanma yapılan numunenin ise tek boyutta büyüdüğü ve yüzeysel çekirdeklendiği bulunmuştur.

Supporting Institution

Gazi üniversitesi

Project Number

Proje No 07/2019-15

Thanks

Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Proje Programı tarafından desteklenmiştir (Proje No 07/2019-15). Mali destekleri ve laboratuvar olanaklarının sağlanması için Gazi Üniversitesi'ne teşekkür ederiz.

References

  • [1] Starke Jr, Edgar A., and J. T_ Staley. "Application of modern aluminum alloys to aircraft." Progress in aerospace sciences 32.2-3 (1996): 131-172.
  • [2]Altuntaş, Gözde, Onur Altuntaş, and Bülent Bostan. "Characterization of Al-7075/T651 Alloy by RRA Heat Treatment and Different Pre-deformation Effects." Transactions of the Indian Institute of Metals 74.12 (2021): 3025-3033.
  • [3] Altuntaş, G. Ö. Z. D. E., and B. Ü. L. E. N. T. Bostan. "Metallurgical characterization of natural aging effects on pre-deformed Al 7075/T651 alloy during retrogression and re-aging heat treatment." KOVOVE MATERIALY 60.4 (2022).
  • [4] Ringer, S. P., and K. Hono. "Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies." Materials characterization 44.1-2 (2000): 101-131.
  • [5] Altuntaş, Gözde, and Bülent Bostan. "Al–Zn–Mg–Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi." Politeknik Dergisi: 1-1.
  • [6] Celotto, S. T. E. M. "TEM study of continuous precipitation in Mg–9 wt% Al–1 wt% Zn alloy." Acta materialia 48.8 (2000): 1775-1787.
  • [7] Singh, Sudhanshu S., et al. "Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography." Materials Characterization 118 (2016): 102-111.
  • [8] Maloney, S. K., et al. "The chemistry of precipitates in an aged Al-2.1 Zn-1.7 Mg at.% alloy." Scripta Materialia 41.10 (1999): 1031-1038.
  • [9] ALTUNTAŞ, Onur. "Enhancement of impact toughness properties of Al 7075 alloy via double aging heat treatment." Gazi University Journal of Science Part C: Design and Technology: 194-202.
  • [10] Viana, Filomena, et al. "Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization." Journal of Materials Processing Technology 92 (1999): 54-59.
  • [11] DESCHAMPS A, LIVET F, BRECHET Y. Influence of predeformation on ageing in an Al−Zn−Mg alloy—I. Microstructure evolution and mechanical properties [J]. Acta Materialia, 1998, 47:281−292 . [12] DEGISCHER H P, LACOM W, ZAHRA A, ZAHRA C Y. Decomposition processes in an Al−5%Zn−1%Mg alloy: II. Electromicroscopic Investigation [J]. Zeitschrift Fur Metallkunde, 980, 71: 231−238.
  • [13] LI X Z, HANSEN V, GJØNNES J, WALLENBERG L R. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al−Zn−Mg alloys [J]. Acta Materialia, 1999, 47: 2651−2659
  • [14] MALONEY S K, HONO K, POLMEAR I J, RINGER S P. The effects of a trace addition of silver upon elevated temperature ageing of an Al−Zn−Mg alloy [J]. Micron, 2001, 32: 741−747
  • [15] Hansen, Vidar, et al. "Structures and transformations during artificial aging of an industrial 7xxx-Series Al-Zn-Mg-Zr alloy." Materials Science Forum. Vol. 396. Trans Tech Publications Ltd, 2002.
  • [16] J. Buha, R. N. Lumley, and A. G. Crosky. "Secondary ageing in an aluminium alloy 7050, Materials Science and Engineering: A. 492.1-2 (2008) 1-10. https://doi.org/10.1016/j.msea.2008.02.039
  • [17]F. Viana, A. M. P Pinto, H. M. C. Santos, & A. B. Lopes, Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. Journal of Materials Processing Technology. 92 (1999) 54-59. https://doi.org/10.1016/S0924-0136(99)00219-8
  • [18] R. Ranganatha, V.A Kumar, V.S Nandi, R.R Bhat, & K Muralidhara. Multi-stage heat treatment of aluminum alloy AA7049. Transactions of Nonferrous Metals Society of China. 23.6 (2013) 1570-1575. https://doi.org/10.1016/S1003-6326(13)62632-1
  • [19] Ozawa, T., Kinetic analysis of derivative curves in thermal analysis. Journal Thermal Analysis, (2); 301, (1970).
  • [20] Weinberg, Michael C., Dunbar P. Birnie III, and Vitaly A. Shneidman. "Crystallization kinetics and the JMAK equation." Journal of non-crystalline solids 219 (1997): 89-99.
  • [21] Laidler, Keith J. "The development of the Arrhenius equation." Journal of chemical Education 61.6 (1984): 494.
  • [22] Sunwoo, Anne. "Diffusion bonding of aluminium alloy, 8090." Scripta Metallurgica et Materialia;(United States) 31.4 (1994).

Effect of Cryogenic and Natural Aging Treatment Applied to 7075 Al Alloy on Avrami Parameter

Year 2022, , 691 - 698, 30.12.2022
https://doi.org/10.29109/gujsc.1179514

Abstract

In this study, after solution heat treatment of 7075 Al alloy, cryogenic treatment was applied at -40 °C for 2 hours and aging heat treatment was performed at room temperature for 10 and 100 days. Other specimens were naturally aged for 10 and 100 days without cryogenic treatment. Each specimen was analyzed by differential scanning calorimetry (DSC) after natural aging. As a result of the analysis, the transformation curves of the metastable η′ phase (MgZn2), known as the main strength phase, were found. Avrami parameters (n) were calculated with Johnson-Mehl-Avrami (JMA) and Ozawa equations. With the calculations, the avram parameter to be obtained at the end of the transformation phase and the growth and nucleation rates were investigated. The results showed that the naturally aged specimen for 10 days after cryogenic treatment grew in two dimensions and had volumetric nucleation. It was found that only naturally aged specimen and naturally aged specimens for 100 days after cryogenic treatment grew to one size and had superficial nucleation.

Project Number

Proje No 07/2019-15

References

  • [1] Starke Jr, Edgar A., and J. T_ Staley. "Application of modern aluminum alloys to aircraft." Progress in aerospace sciences 32.2-3 (1996): 131-172.
  • [2]Altuntaş, Gözde, Onur Altuntaş, and Bülent Bostan. "Characterization of Al-7075/T651 Alloy by RRA Heat Treatment and Different Pre-deformation Effects." Transactions of the Indian Institute of Metals 74.12 (2021): 3025-3033.
  • [3] Altuntaş, G. Ö. Z. D. E., and B. Ü. L. E. N. T. Bostan. "Metallurgical characterization of natural aging effects on pre-deformed Al 7075/T651 alloy during retrogression and re-aging heat treatment." KOVOVE MATERIALY 60.4 (2022).
  • [4] Ringer, S. P., and K. Hono. "Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies." Materials characterization 44.1-2 (2000): 101-131.
  • [5] Altuntaş, Gözde, and Bülent Bostan. "Al–Zn–Mg–Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi." Politeknik Dergisi: 1-1.
  • [6] Celotto, S. T. E. M. "TEM study of continuous precipitation in Mg–9 wt% Al–1 wt% Zn alloy." Acta materialia 48.8 (2000): 1775-1787.
  • [7] Singh, Sudhanshu S., et al. "Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography." Materials Characterization 118 (2016): 102-111.
  • [8] Maloney, S. K., et al. "The chemistry of precipitates in an aged Al-2.1 Zn-1.7 Mg at.% alloy." Scripta Materialia 41.10 (1999): 1031-1038.
  • [9] ALTUNTAŞ, Onur. "Enhancement of impact toughness properties of Al 7075 alloy via double aging heat treatment." Gazi University Journal of Science Part C: Design and Technology: 194-202.
  • [10] Viana, Filomena, et al. "Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization." Journal of Materials Processing Technology 92 (1999): 54-59.
  • [11] DESCHAMPS A, LIVET F, BRECHET Y. Influence of predeformation on ageing in an Al−Zn−Mg alloy—I. Microstructure evolution and mechanical properties [J]. Acta Materialia, 1998, 47:281−292 . [12] DEGISCHER H P, LACOM W, ZAHRA A, ZAHRA C Y. Decomposition processes in an Al−5%Zn−1%Mg alloy: II. Electromicroscopic Investigation [J]. Zeitschrift Fur Metallkunde, 980, 71: 231−238.
  • [13] LI X Z, HANSEN V, GJØNNES J, WALLENBERG L R. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al−Zn−Mg alloys [J]. Acta Materialia, 1999, 47: 2651−2659
  • [14] MALONEY S K, HONO K, POLMEAR I J, RINGER S P. The effects of a trace addition of silver upon elevated temperature ageing of an Al−Zn−Mg alloy [J]. Micron, 2001, 32: 741−747
  • [15] Hansen, Vidar, et al. "Structures and transformations during artificial aging of an industrial 7xxx-Series Al-Zn-Mg-Zr alloy." Materials Science Forum. Vol. 396. Trans Tech Publications Ltd, 2002.
  • [16] J. Buha, R. N. Lumley, and A. G. Crosky. "Secondary ageing in an aluminium alloy 7050, Materials Science and Engineering: A. 492.1-2 (2008) 1-10. https://doi.org/10.1016/j.msea.2008.02.039
  • [17]F. Viana, A. M. P Pinto, H. M. C. Santos, & A. B. Lopes, Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. Journal of Materials Processing Technology. 92 (1999) 54-59. https://doi.org/10.1016/S0924-0136(99)00219-8
  • [18] R. Ranganatha, V.A Kumar, V.S Nandi, R.R Bhat, & K Muralidhara. Multi-stage heat treatment of aluminum alloy AA7049. Transactions of Nonferrous Metals Society of China. 23.6 (2013) 1570-1575. https://doi.org/10.1016/S1003-6326(13)62632-1
  • [19] Ozawa, T., Kinetic analysis of derivative curves in thermal analysis. Journal Thermal Analysis, (2); 301, (1970).
  • [20] Weinberg, Michael C., Dunbar P. Birnie III, and Vitaly A. Shneidman. "Crystallization kinetics and the JMAK equation." Journal of non-crystalline solids 219 (1997): 89-99.
  • [21] Laidler, Keith J. "The development of the Arrhenius equation." Journal of chemical Education 61.6 (1984): 494.
  • [22] Sunwoo, Anne. "Diffusion bonding of aluminium alloy, 8090." Scripta Metallurgica et Materialia;(United States) 31.4 (1994).
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Gözde Altuntaş 0000-0003-4504-0850

Bulent Bostan 0000-0002-6114-875X

Project Number Proje No 07/2019-15
Publication Date December 30, 2022
Submission Date September 23, 2022
Published in Issue Year 2022

Cite

APA Altuntaş, G., & Bostan, B. (2022). 7075 Al Alaşımına Uygulanan Kriyojenik ve Doğal Yaşlandırma İşleminin Avrami Parametresine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(4), 691-698. https://doi.org/10.29109/gujsc.1179514

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526