Research Article
BibTex RIS Cite

Metal Yüzlü Sandviç Konsol Kirişlerde Numune Boyunun Ölçülen Temel Titreşim Frekansına Etkisi

Year 2020, , 237 - 244, 28.06.2020
https://doi.org/10.29109/gujsc.591724

Abstract

Bu
çalışmada düz metal yüzlü ve rijit köpük çekirdekli sandviç kirişlerin temel
titreşim frekanslarının ölçümünde konsol kiriş numune boyunun neticelere etkisi
incelenmiştir. Bu maksatla basit bir titreşim deney düzeneği oluşturulmuş ve
imal edilen sandviç kiriş numuneleri üzerinde 3 farklı konsol uzunluğu için
titreşim deneyleri yapılmıştır. Elde edilen deneysel neticeler bir sonlu
elemanlar modeli ile elde edilmiş olan neticeler ile mukayese edilmiştir.
Yapılan mukayese konsol kiriş titreşim deneyi ile sandviç kiriş temel titreşim
frekansının hassas olarak ölçülebileceğini ve numune boyunun artırılmasının
genel olarak hassasiyeti artırdığını göstermiştir.

Thanks

Yazarlar Pakmetal A.Ş.’den Harun TAYLAN Bey’e deney düzeneklerinin kurulmasında yardımları sebebiyle şükranlarını sunarlar.

References

  • 1. ASTM, E. (1876). Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio by impulse excitation of vibration. Annual Book of ASTM Standards, 3, 1876.
  • 2. ASTM, E. (2004). 756-04: Standard test method for measuring vibration-damping properties of materials. In American Society for Testing and Materials.
  • 3. Hyer, M. W., Anderson, W. J., & Scott, R. A.. Non-linear vibrations of three-layer beams with viscoelastic cores, II: Experiment. Journal of Sound and Vibration, 61(1), 25-30, (1978).
  • 4. Sokolinsky, V. S., Von Bremen, H. F., Lavoie, J. A., & Nutt, S. R. Analytical and experimental study of free vibration response of soft-core sandwich beams. Journal of Sandwich Structures & Materials, 6(3), 239-261, (2004).
  • 5. Rizos P.F., Aspragathos N., Dimarogonas A.D. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal ofsound and Vibration, 138(3), 381-388, (1990).
  • 6. Baba, B. O., & Thoppul, S. Experimental evaluation of the vibration behavior of flat and curved sandwich composite beams with face/core debond. Composite Structures, 91(1), 110-119, (2009).
  • 7. Baba, B. O., & Thoppul, S. An experimental investigation of free vibration response of curved sandwich beam with face/core debond. Journal of Reinforced Plastics and Composites, 29(21), 3208-3218, (2010)
  • 8. Albarbar, A., Badri, A., Sinha, J. K., & Starr, A. Performance evaluation of MEMS accelerometers. Measurement, 42(5), 790-795, (2009).
  • 9. Varanis, M., Silva, A. L., Brunetto, P. H. A., & Gregolin, R. F. Instrumentation for mechanical vibrations analysis in the time domain and frequency domain using the Arduino platform. Revista Brasileira de Ensino de Física, 38(1), (2016).
  • 10. Varanis, M., Silva, A. L., & Mereles, A. G. On mechanical vibration analysis of a multi degree of freedom system based on arduino and MEMS accelerometers. Revista Brasileira de Ensino de Física, 40(1), (2018.)
  • 11. Hinton, E., & Owen, D. P. (1977). Finite element programming. (kitap)
  • 12. ASTM International. (2006). Standard test method for core shear properties of sandwich constructions by beam flexure. ASTM C393/C393M-06.
  • 13. Cooley, J. W., Lewis, P. A., & Welch, P. D. Historical notes on the fast Fourier transform. Proceedings of the IEEE, 55(10), 1675-1677, (1967).
  • 14. Chopra, A. K. (1995). Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall. (kitap)
Year 2020, , 237 - 244, 28.06.2020
https://doi.org/10.29109/gujsc.591724

Abstract

References

  • 1. ASTM, E. (1876). Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio by impulse excitation of vibration. Annual Book of ASTM Standards, 3, 1876.
  • 2. ASTM, E. (2004). 756-04: Standard test method for measuring vibration-damping properties of materials. In American Society for Testing and Materials.
  • 3. Hyer, M. W., Anderson, W. J., & Scott, R. A.. Non-linear vibrations of three-layer beams with viscoelastic cores, II: Experiment. Journal of Sound and Vibration, 61(1), 25-30, (1978).
  • 4. Sokolinsky, V. S., Von Bremen, H. F., Lavoie, J. A., & Nutt, S. R. Analytical and experimental study of free vibration response of soft-core sandwich beams. Journal of Sandwich Structures & Materials, 6(3), 239-261, (2004).
  • 5. Rizos P.F., Aspragathos N., Dimarogonas A.D. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal ofsound and Vibration, 138(3), 381-388, (1990).
  • 6. Baba, B. O., & Thoppul, S. Experimental evaluation of the vibration behavior of flat and curved sandwich composite beams with face/core debond. Composite Structures, 91(1), 110-119, (2009).
  • 7. Baba, B. O., & Thoppul, S. An experimental investigation of free vibration response of curved sandwich beam with face/core debond. Journal of Reinforced Plastics and Composites, 29(21), 3208-3218, (2010)
  • 8. Albarbar, A., Badri, A., Sinha, J. K., & Starr, A. Performance evaluation of MEMS accelerometers. Measurement, 42(5), 790-795, (2009).
  • 9. Varanis, M., Silva, A. L., Brunetto, P. H. A., & Gregolin, R. F. Instrumentation for mechanical vibrations analysis in the time domain and frequency domain using the Arduino platform. Revista Brasileira de Ensino de Física, 38(1), (2016).
  • 10. Varanis, M., Silva, A. L., & Mereles, A. G. On mechanical vibration analysis of a multi degree of freedom system based on arduino and MEMS accelerometers. Revista Brasileira de Ensino de Física, 40(1), (2018.)
  • 11. Hinton, E., & Owen, D. P. (1977). Finite element programming. (kitap)
  • 12. ASTM International. (2006). Standard test method for core shear properties of sandwich constructions by beam flexure. ASTM C393/C393M-06.
  • 13. Cooley, J. W., Lewis, P. A., & Welch, P. D. Historical notes on the fast Fourier transform. Proceedings of the IEEE, 55(10), 1675-1677, (1967).
  • 14. Chopra, A. K. (1995). Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall. (kitap)
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

İzzet Ufuk Çağdaş 0000-0002-2528-2978

Raphiq Aliyev This is me 0000-0001-8300-5648

Publication Date June 28, 2020
Submission Date July 14, 2019
Published in Issue Year 2020

Cite

APA Çağdaş, İ. U., & Aliyev, R. (2020). Metal Yüzlü Sandviç Konsol Kirişlerde Numune Boyunun Ölçülen Temel Titreşim Frekansına Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(2), 237-244. https://doi.org/10.29109/gujsc.591724

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526