Review
BibTex RIS Cite

Endüstriyel Atık Bazlı Jeopolimer Betonda Atık Döküm Kumunun Doğal Agrega Yerine İkame Edilerek Kullanımı Üzerine Bir Kaynak Taraması

Year 2020, , 746 - 757, 27.09.2020
https://doi.org/10.29109/gujsc.768064

Abstract

Kentleşme ve sanayileşmenin artması, nehir kumu ve çakıllar gibi doğal kaynakların aşırı kullanılmasına yol açmıştır. Çimento, CO2 emisyonu ile çevreyi olumsuz etkilemektedir. Düzenli depolama alanlarında atıkların depolanması ve bertaraf yöntemleri büyük ekonomik yükümlülükler meydana getirmekte ve çevresel kaygıların artmasına sebep olmaktadır. Bu nedenle katı atık yan ürünlerini ve malzemelerini yeniden konumlandırarak yönetmek çekici bir alternatif bertaraf biçimi haline gelmiştir. Bu araştırmada, endüstriyel bir atık türü olan atık döküm kumlarının (WFS) doğal ince agrega yerine ikame edilerek kullanımının jeopolimer betondaki (GPC) etkileri incelenmiştir. İncelemeler sonucunda, araştırma konusu olan WFS’nin doğal kum yerine ikame edilerek çeşitli endüstriyel atık bazlı GPC’de kullanımına yönelik literatürde sınırlı sayıda çalışma olduğu ve bu çalışmalarda daha çok mekanik özellikler üzerine yoğunlaşıldığı ve en çok basınç dayanımının incelendiği belirlenmiştir. Ayrıca, WFS ikameli GPC’lerin basınç dayanımlarının belirlenmesinde farklı WFS optimum ikame oranlarının belirlendiği görülmüştür. WFS ikamesinin çeşitli endüstriyel atıklarla üretilen GPC’nin yapım genel maliyetini, işlenebilirliğini, su emme ve kılcal geçirimliliğini düşürdüğü belirlenmiştir. WFS ilavesiyle üretilen GPC’nin geleneksel betona göre asit ve sülfat saldırısına karşı daha iyi direnç gösterdiği bildirilmiştir. Bu alanda literatürde henüz yeterince araştırılmamış konular üzerinde yapılacak disiplinler arası çalışmalarla farklı oranlarda WFS ikameli GPC’lerin fiziksel (donma-çözülme, termal iletkenlik, TGA vb.), kimyasal (FT-IR vb.), mekanik (darbe testi, sertlik vb.), durabilite ve mikro yapı incelemeleri, radyolojik vb. özelliklerin kapsamlı bir şekilde araştırılmasının birçok yönden literatüre katkı sağlayacağı düşünülmektedir. Çalışmalar sonucunda elde edilecek bilgi, birikim ve deneyimlerden yararlanarak WFS ikameli ve endüstriyel atık bazlı GPC’nin kullanım alanlarının genişletilmesi, mukavemetinin arttırılması, maliyetin azaltılması, GPC üretimi için potansiyel sürdürülebilir bir kaynak sağlanması, atıkların değerlendirilerek bertarafın ve bertaraf maliyetinin azaltılması, doğal kaynakların korunması ve çimentonun CO2 salınımı nedeniyle çevre kirliliğine sebep olan olumsuz etkisinin en aza indirilmesi yönünde çok büyük bir kazanç elde edileceği düşünülmektedir.

References

  • Referans1 Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl 2011;55:885–92. https://doi.org/10.1016/j.resconrec.2011.05.001.
  • Referans2 Yalılı K.M, Tüylü M. Atık Döküm Kumları İçin Uygun Bertaraf Yönteminin Maliyet Analizi ile Belirlenmesi: Bursa Örneği. Doğal Afetler ve Çevre Derg 2019;90:1–10. https://doi.org/10.21324/dacd.490558.
  • Referans3 Kumar Patel BB, Kumar Pitroda J. A Review of Geo Polymer Concrete by Using Various Industrial Waste Materials. Int J Constr Res Civ Eng 2017;3:121–31. https://doi.org/10.20431/2454-8693.0304011.
  • Referans4 Okenyi V. Strength Properties of Concrete Produced With Foundry Sand as Fine Aggregate Replacement 2020. https://doi.org/10.13140/RG.2.2.29829.91367/1.
  • Referans5 Davidovits J. Properties of Geopolymer Cements. First Int Conf Alkaline Cem Concr 1994:131–49.
  • Referans6 Jian, He. Synthesis and characterization of geopolymers for infrastructural applications ,Louisiana State University LSU Digital Commons 2012.
  • Referans7 Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: A review of some recent developments. Constr Build Mater 2015;85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
  • Referans8 Hadi MNS, Al-Azzawi M, Yu T. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 2018;175:41–54. https://doi.org/10.1016/j.conbuildmat.2018.04.092.
  • Referans9 Li C, Sun H, Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 2010;40:1341–9. https://doi.org/10.1016/j.cemconres.2010.03.020.
  • Referans10 Yusuf TO, Ismail M, Usman J, Noruzman AH. Impact of Blending on Strength Distribution of Ambient Cured Metakaolin and Palm Oil Fuel Ash Based Geopolymer Mortar. Adv Civ Eng 2014;2014. https://doi.org/10.1155/2014/658067.
  • Referans11 Ganesan N, Abraham R, Deepa Raj S, Sasi D. Fracture properties of geopolymer concrete. Asian J Civ Eng 2015;16:127–34.
  • Referans12 Provis JL. Geopolymers and other alkali activated materials: Why, how, and what? Mater Struct Constr 2014;47:11–25. https://doi.org/10.1617/s11527-013-0211-5.
  • Referans13 Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: The current state of the art. J Mater Sci 2007;42:2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Referans14 İSO 500 | Türkiye’nin 500 Büyük Sanayi Kuruluşu n.d. http://www.iso500.org.tr/500-buyuk-sanayi-kurulusu/2018/ (Erişim tarihi: 09.06.2020).
  • Referans15 TÜRKDÖKÜM Dergisi, Sayı 54, 2020, https://tudoksad.org.tr/upload/files/T%C3%BCrkd%C3%B6k%C3%BCm_Sayi_54.pdf (Erişim tarihi: 09.06.2020).
  • Referans16 Dökümhanelerden Kaynaklanan Tehlikeli Katı Atıkların Yönetimi. Eckart Schultes - PDF Free Download n.d. https://docplayer.biz.tr/2791654-Dokumhanelerden-kaynaklanan-tehlikeli-kati-atiklarin-yonetimi-eckart-schultes.html (Erişim tarihi: 09.06.2020).
  • Referans17 Türkiye Döküm Sanayicileri Derneği. Türki̇ye Döküm Sektörü, Kullanılmış Döküm Kumunun Değerlendirilmesi ve Geri Kazanımı, 2019. http://www.tudoksad.org.tr/upload/files/TUDOKSAD_Dokum_Kumu_Geri_Kazanimi_Raporu_F%20%282%29%20%283%29.pdf (Erişim tarihi: 09.06.2020).
  • Referans18 Bhardwaj B, Kumar P. Waste foundry sand in concrete: A review. Constr Build Mater 2017;156:661–74. https://doi.org/10.1016/j.conbuildmat.2017.09.010.
  • Referans19 Naik TR. Foundry Industry By-Products Utilization. University of Wisconsin-Milwaukee, Department of Civil Engineering and Mechanics, Center for By-Products Utilization, Report No. CBU-1989-01, 1989.
  • Referans20 Dayton EA, Whitacre SD, Dungan RS, Basta NT. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant Soil 2010;329:27–33. https://doi.org/10.1007/s11104-009-0120-0.
  • Referans21 Ellis JMK and DJ. Mechanical Properties of Concrete Containing Foundry Sand. Spec Publ n.d.;200. https://doi.org/10.14359/10612.
  • Referans22 Aggarwal Y, Siddique R. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater 2014;54:210–23. https://doi.org/10.1016/j.conbuildmat.2013.12.051.
  • Referans23 Naik TR, Kraus RN, Ramme BW, Canpolat F. Effects of fly ash and foundry sand on performance of architectural precast concrete. J Mater Civ Eng 2012;24:851–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000432.
  • Referans24 Javed S, Lovell CW, Wood LE. Waste foundry sand in asphalt concrete. Transp Res Rec 1994:27–34.
  • Referans25 Fiore S, Zanetti MC. Foundry wastes reuse and recycling in concrete production. Am J Environ Sci 2007;3:135–42. https://doi.org/10.3844/ajessp.2007.135.142.
  • Referans26 Morale A, Chaurasiya D, Jaiswal AP. Effective Utilization of Foundry Sand and Ground Granulated Blast Furnace Slag in Geopolymer. Asian J Converg Tecnol 2015;III:1–7.
  • Referans27 Elakyah D, Kalaivani M, Easwaran P. Effect of Curing and Molarity on Geopolymer Concrete With Foundry Sand 2019;7:203–8.
  • Referans28 Sashidhar, C., GURU, J. J., Neelima, C., & PAVAN, K. D. Preliminary Studies on self compacting geopolymer concrete using manufactured sand, 2016.
  • Referans29 Thaarrini J, Ramasamy V. Properties of foundry sand, ground granulated blast furnace slag and bottom ash based geopolymers under ambient conditions. Period Polytech Civ Eng 2016;60:159–68. https://doi.org/10.3311/PPci.8014.
  • Referans30 Patiyal N, Kumar J, Sharma AK. Experimental Study on Geopolymer Concrete with Partial Replacement of Fine Aggregate with Foundry Sand. vol. 3. 2016.
  • Referans31 Bhardwaj B, Kumar P. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr Build Mater 2019;209:555–65. https://doi.org/10.1016/j.conbuildmat.2019.03.107.
  • Referans32 Venkatesan M, Zaib Q, Shah IH, Park HS. Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments. Resour Conserv Recycl 2019;148:114–23. https://doi.org/10.1016/j.resconrec.2019.05.008.
  • Referans33 Devi R, Sharma SK, Gupta H. Effect of Different Curing Conditions on Geopolymer Concrete By Partially Replacing Sand With Foundry Sand. J Today’S Ideas - Tomorrow’S Technol 2015;3:123–8. https://doi.org/10.15415/jotitt.2015.32008.
  • Referans34 Apithanyasai S, Supakata N, Papong S. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon 2020;6:e03697. https://doi.org/10.1016/j.heliyon.2020.e03697.
  • Referans35 Doǧan-Saǧlamtimur N. Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse. Adv Civ Eng 2018;2018. https://doi.org/10.1155/2018/1927135.
Year 2020, , 746 - 757, 27.09.2020
https://doi.org/10.29109/gujsc.768064

Abstract

References

  • Referans1 Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl 2011;55:885–92. https://doi.org/10.1016/j.resconrec.2011.05.001.
  • Referans2 Yalılı K.M, Tüylü M. Atık Döküm Kumları İçin Uygun Bertaraf Yönteminin Maliyet Analizi ile Belirlenmesi: Bursa Örneği. Doğal Afetler ve Çevre Derg 2019;90:1–10. https://doi.org/10.21324/dacd.490558.
  • Referans3 Kumar Patel BB, Kumar Pitroda J. A Review of Geo Polymer Concrete by Using Various Industrial Waste Materials. Int J Constr Res Civ Eng 2017;3:121–31. https://doi.org/10.20431/2454-8693.0304011.
  • Referans4 Okenyi V. Strength Properties of Concrete Produced With Foundry Sand as Fine Aggregate Replacement 2020. https://doi.org/10.13140/RG.2.2.29829.91367/1.
  • Referans5 Davidovits J. Properties of Geopolymer Cements. First Int Conf Alkaline Cem Concr 1994:131–49.
  • Referans6 Jian, He. Synthesis and characterization of geopolymers for infrastructural applications ,Louisiana State University LSU Digital Commons 2012.
  • Referans7 Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: A review of some recent developments. Constr Build Mater 2015;85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
  • Referans8 Hadi MNS, Al-Azzawi M, Yu T. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 2018;175:41–54. https://doi.org/10.1016/j.conbuildmat.2018.04.092.
  • Referans9 Li C, Sun H, Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 2010;40:1341–9. https://doi.org/10.1016/j.cemconres.2010.03.020.
  • Referans10 Yusuf TO, Ismail M, Usman J, Noruzman AH. Impact of Blending on Strength Distribution of Ambient Cured Metakaolin and Palm Oil Fuel Ash Based Geopolymer Mortar. Adv Civ Eng 2014;2014. https://doi.org/10.1155/2014/658067.
  • Referans11 Ganesan N, Abraham R, Deepa Raj S, Sasi D. Fracture properties of geopolymer concrete. Asian J Civ Eng 2015;16:127–34.
  • Referans12 Provis JL. Geopolymers and other alkali activated materials: Why, how, and what? Mater Struct Constr 2014;47:11–25. https://doi.org/10.1617/s11527-013-0211-5.
  • Referans13 Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: The current state of the art. J Mater Sci 2007;42:2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Referans14 İSO 500 | Türkiye’nin 500 Büyük Sanayi Kuruluşu n.d. http://www.iso500.org.tr/500-buyuk-sanayi-kurulusu/2018/ (Erişim tarihi: 09.06.2020).
  • Referans15 TÜRKDÖKÜM Dergisi, Sayı 54, 2020, https://tudoksad.org.tr/upload/files/T%C3%BCrkd%C3%B6k%C3%BCm_Sayi_54.pdf (Erişim tarihi: 09.06.2020).
  • Referans16 Dökümhanelerden Kaynaklanan Tehlikeli Katı Atıkların Yönetimi. Eckart Schultes - PDF Free Download n.d. https://docplayer.biz.tr/2791654-Dokumhanelerden-kaynaklanan-tehlikeli-kati-atiklarin-yonetimi-eckart-schultes.html (Erişim tarihi: 09.06.2020).
  • Referans17 Türkiye Döküm Sanayicileri Derneği. Türki̇ye Döküm Sektörü, Kullanılmış Döküm Kumunun Değerlendirilmesi ve Geri Kazanımı, 2019. http://www.tudoksad.org.tr/upload/files/TUDOKSAD_Dokum_Kumu_Geri_Kazanimi_Raporu_F%20%282%29%20%283%29.pdf (Erişim tarihi: 09.06.2020).
  • Referans18 Bhardwaj B, Kumar P. Waste foundry sand in concrete: A review. Constr Build Mater 2017;156:661–74. https://doi.org/10.1016/j.conbuildmat.2017.09.010.
  • Referans19 Naik TR. Foundry Industry By-Products Utilization. University of Wisconsin-Milwaukee, Department of Civil Engineering and Mechanics, Center for By-Products Utilization, Report No. CBU-1989-01, 1989.
  • Referans20 Dayton EA, Whitacre SD, Dungan RS, Basta NT. Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant Soil 2010;329:27–33. https://doi.org/10.1007/s11104-009-0120-0.
  • Referans21 Ellis JMK and DJ. Mechanical Properties of Concrete Containing Foundry Sand. Spec Publ n.d.;200. https://doi.org/10.14359/10612.
  • Referans22 Aggarwal Y, Siddique R. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater 2014;54:210–23. https://doi.org/10.1016/j.conbuildmat.2013.12.051.
  • Referans23 Naik TR, Kraus RN, Ramme BW, Canpolat F. Effects of fly ash and foundry sand on performance of architectural precast concrete. J Mater Civ Eng 2012;24:851–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000432.
  • Referans24 Javed S, Lovell CW, Wood LE. Waste foundry sand in asphalt concrete. Transp Res Rec 1994:27–34.
  • Referans25 Fiore S, Zanetti MC. Foundry wastes reuse and recycling in concrete production. Am J Environ Sci 2007;3:135–42. https://doi.org/10.3844/ajessp.2007.135.142.
  • Referans26 Morale A, Chaurasiya D, Jaiswal AP. Effective Utilization of Foundry Sand and Ground Granulated Blast Furnace Slag in Geopolymer. Asian J Converg Tecnol 2015;III:1–7.
  • Referans27 Elakyah D, Kalaivani M, Easwaran P. Effect of Curing and Molarity on Geopolymer Concrete With Foundry Sand 2019;7:203–8.
  • Referans28 Sashidhar, C., GURU, J. J., Neelima, C., & PAVAN, K. D. Preliminary Studies on self compacting geopolymer concrete using manufactured sand, 2016.
  • Referans29 Thaarrini J, Ramasamy V. Properties of foundry sand, ground granulated blast furnace slag and bottom ash based geopolymers under ambient conditions. Period Polytech Civ Eng 2016;60:159–68. https://doi.org/10.3311/PPci.8014.
  • Referans30 Patiyal N, Kumar J, Sharma AK. Experimental Study on Geopolymer Concrete with Partial Replacement of Fine Aggregate with Foundry Sand. vol. 3. 2016.
  • Referans31 Bhardwaj B, Kumar P. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr Build Mater 2019;209:555–65. https://doi.org/10.1016/j.conbuildmat.2019.03.107.
  • Referans32 Venkatesan M, Zaib Q, Shah IH, Park HS. Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments. Resour Conserv Recycl 2019;148:114–23. https://doi.org/10.1016/j.resconrec.2019.05.008.
  • Referans33 Devi R, Sharma SK, Gupta H. Effect of Different Curing Conditions on Geopolymer Concrete By Partially Replacing Sand With Foundry Sand. J Today’S Ideas - Tomorrow’S Technol 2015;3:123–8. https://doi.org/10.15415/jotitt.2015.32008.
  • Referans34 Apithanyasai S, Supakata N, Papong S. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon 2020;6:e03697. https://doi.org/10.1016/j.heliyon.2020.e03697.
  • Referans35 Doǧan-Saǧlamtimur N. Waste Foundry Sand Usage for Building Material Production: A First Geopolymer Record in Material Reuse. Adv Civ Eng 2018;2018. https://doi.org/10.1155/2018/1927135.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Şevki Eren 0000-0003-0773-4034

Publication Date September 27, 2020
Submission Date July 11, 2020
Published in Issue Year 2020

Cite

APA Eren, Ş. (2020). Endüstriyel Atık Bazlı Jeopolimer Betonda Atık Döküm Kumunun Doğal Agrega Yerine İkame Edilerek Kullanımı Üzerine Bir Kaynak Taraması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(3), 746-757. https://doi.org/10.29109/gujsc.768064

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526