Cantor Yüksek Entropili Alaşımına Mn Yerine Cu İkamesinin Yapısal ve Mekanik Özellikler Üzerindeki Etkisinin Araştırılması
Year 2023,
Volume: 11 Issue: 2, 379 - 387, 23.06.2023
Kürşat İcin
,
Sefa Emre Sünbül
,
Ataberk Yıldız
Abstract
Bu çalışmada klasik Cantor yüksek entropili alaşımın bileşiminde yer alan Mn yerine eklenen Cu elementinin mikroyapıda ve mekanik özellikler üzerindeki etkileri araştırılmıştır. CoCrFeNiMn ve CoCrFeNiCu yüksek entropili alaşımları ark ergitme ile üretilmişlerdir. X-ışını difraktometresinden elde edilen veriler her iki alaşımın da yüzey merkezli kübik yapıya sahip olduğunu bulunmuştur. CoCrFeNiMn alaşımının mikroyapısında herhangi bir ikinci faz görülmezken CoCrFeNiCu alaşımın mikroyapısında YMK yapılı matris ve bakırca zengin YMK yapılı ikinci faz oluşumu belirlenmiştir. CoCrFeNiMn alaşımın maksimum çekme gerilmesi 501 MPa iken CoCrFeNiCu alaşımının maksimum çekme gerilmesi 491 MPa olarak bulunmuştur. Her iki alaşımın akma dayanımları karşılaştırıldığında Mn’lı CoCrFeNiMn alaşım için 212 MPa, Cu’lı CoCrFeNiCu alaşım için 290 MPa olarak hesaplanmıştır. CoCrFeNiMn için ölçülen %56,67 gerinimi CoCrFeNiCu alaşımında %43,97’ye azalmıştır.
Supporting Institution
Karadeniz Teknik Üniversitesi
Project Number
FYL 2020-9238
References
- [1] Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2): 233-238.
- [2] Du, L.M., et al., Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. Journal of Materials Science & Technology, 2019. 35(5): 917-925.
- [3] Zhang, H., et al., Application Prospects and Microstructural Features in Laser-Induced Rapidly Solidified High-Entropy Alloys. JOM, 2014. 66(10): 2057-2066.
- [4] Zhang, C., et al., Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications. Acta Materialia, 2023. 242: 118449.
[5] Gao, T., et al., Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids. International Journal of Mechanical Sciences, 2023. 237: 107800.
- [6] Andrade, G., et al., Crystal structure and hydrogen storage properties of AB-type TiZrNbCrFeNi high-entropy alloy. International Journal of Hydrogen Energy, 2023.
- [7] Xiao, G., et al., Superconductivity with large upper critical field in noncentrosymmetric Cr-bearing high-entropy alloys. Scripta Materialia, 2023. 223: 115099.
- [8] Meng, C., et al., Effect of Cu content on microstructure and properties of CoCrFeNiCux high-entropy alloy coatings prepared by induction cladding. Journal of Alloys and Compounds, 2023. 934: 167896.
- [9] Xiong, W., et al., Refractory high-entropy alloys: A focused review of preparation methods and properties. Journal of Materials Science & Technology, 2023. 142: 196-215.
- [10] Otto, F., et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): 5743-5755.
- [11] Öztürk, S., et al., Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy. Journal of Alloys and Compounds, 2022. 903: 163867.
- [12] Shahmir, H., et al., Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science and Engineering: A, 2016. 676: 294-303.
- [13] Xing, Y., et al., Revealing strengthening contribution of grain refinement and phase precipitation in CrMnFeCoNi high-entropy alloy prepared from different powders. Materials Science and Engineering: A, 2022. 860: 144297.
- [14] Liu, B., et al., Effect of cold working and annealing on microstructure and properties of powder metallurgy high entropy alloy. Science China Technological Sciences, 2018. 61(2): 197-203.
- [15] Šebesta, J., K. Carva, and D. Legut, Evolution of the Curie temperature for a substituted Cantor alloy. Physical Review B, 2021. 103(6): 064407.
- [16] Cantor, B., Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021. 120: 100754.
- [17] Erdogan, A., et al., Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum, 2021. 187: 110143.
- [18] Oh, S.M. and S.I. Hong, Microstructure and Mechanical Properties of Equitomic CoCrFeCuNi High Entropy Alloy. Key Engineering Materials, 2018. 765: 149-154.
- [19] Qin, G., et al., Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. Journal of Materials Science & Technology, 2018. 34(2): 365-369.
- [20] Sünbül, S.E., et al., Determination of structural, tribological, isothermal oxidation and corrosion properties of Al–Co–Cr–Fe–Ni–Ti–Cu high-entropy alloy. Vacuum, 2021. 187: 110072.
- [21] Li, Z., Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Materialia, 2019. 164: 400-412.
- [22] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: 448-511.
- [23] Anand, G., R. Goodall, and C.L. Freeman, Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scripta Materialia, 2016. 124: 90-94.
- [24] Praveen, S., B.S. Murty, and R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Materials Science and Engineering: A, 2012. 534: 83-89.
- [25] Manzoni, A., et al., Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. Journal of Alloys and Compounds, 2013. 552: 430-436.
- [26] Choi, W.-M., et al., Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Metals and Materials International, 2017. 23(5): 839-847.
- [27] Veerappan, G., et al., Effect of Copper on Mechanical Properties and Corrosion Behavior of Powder Metallurgy Processed Ni–Co–Cr–Fe–Mn–Cux High Entropy Alloy. Arabian Journal for Science and Engineering, 2022.
- [28] Takeuchi, A. and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Journal of Materials Transactions, 2000. 41(11): 1372-1378.
- [29] Zhang, H., et al., Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. Journal of Alloys and Compounds, 2014. 600: 210-214.
- [30] Thangaraju, S., T.E. Bouzy, and A. Hazotte, Phase Stability of a Mechanically Alloyed CoCrCuFeNi High Entropy Alloy. Advanced Engineering Materials, 2017. 19(8).
- [31] Zhang, D., C. Kenel, and D.C. Dunand, Microstructure and mechanical properties of 3D ink-extruded CoCrCuFeNi microlattices. Acta Materialia, 2022. 238: 118187.
Cantor Yüksek Entropili Alaşımına Mn Yerine Cu İkamesinin Yapısal ve Mekanik Özellikler Üzerindeki Etkisinin Araştırılması
Year 2023,
Volume: 11 Issue: 2, 379 - 387, 23.06.2023
Kürşat İcin
,
Sefa Emre Sünbül
,
Ataberk Yıldız
Abstract
Bu çalışmada klasik Cantor yüksek entropili alaşımın bileşiminde yer alan Mn yerine eklenen Cu elementinin mikroyapıda ve mekanik özellikler üzerindeki etkileri araştırılmıştır. CoCrFeNiMn ve CoCrFeNiCu yüksek entropili alaşımları ark ergitme ile üretilmişlerdir. X-ışını difraktomeresinden elde edilen veriler her iki alaşımın da yüzey merkezli kübik yapıya sahip olduğunu bulunmuştur. CoCrFeNiMn alaşımının mikroyapısında herhangi bir ikinci faz görülmezken CoCrFeNiCu alaşımın mikroyapısında YMK yapılı matris ve bakırca zengin YMK yapılı ikinci faz oluşumu belirlenmiştir. CoCrFeNiMn alaşımın maksimum çekme gerilmesi 501 MPa iken CoCrFeNiCu alaşımının maksimum çekme gerilmesi 491 MPa olarak bulunmuştur. Her iki alaşımın akma dayanımları karşılaştırıldığında Mn’lı CoCrFeNiMn alaşım için 212 MPa, Cu’lı CoCrFeNiCu alaşım için 290 MPa olarak hesaplanmıştır. CoCrFeNiMn için ölçülen %56,67 gerinimi CoCrFeNiCu alaşımında %43,97’ye azalmıştır.
Project Number
FYL 2020-9238
References
- [1] Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2): 233-238.
- [2] Du, L.M., et al., Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. Journal of Materials Science & Technology, 2019. 35(5): 917-925.
- [3] Zhang, H., et al., Application Prospects and Microstructural Features in Laser-Induced Rapidly Solidified High-Entropy Alloys. JOM, 2014. 66(10): 2057-2066.
- [4] Zhang, C., et al., Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications. Acta Materialia, 2023. 242: 118449.
[5] Gao, T., et al., Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids. International Journal of Mechanical Sciences, 2023. 237: 107800.
- [6] Andrade, G., et al., Crystal structure and hydrogen storage properties of AB-type TiZrNbCrFeNi high-entropy alloy. International Journal of Hydrogen Energy, 2023.
- [7] Xiao, G., et al., Superconductivity with large upper critical field in noncentrosymmetric Cr-bearing high-entropy alloys. Scripta Materialia, 2023. 223: 115099.
- [8] Meng, C., et al., Effect of Cu content on microstructure and properties of CoCrFeNiCux high-entropy alloy coatings prepared by induction cladding. Journal of Alloys and Compounds, 2023. 934: 167896.
- [9] Xiong, W., et al., Refractory high-entropy alloys: A focused review of preparation methods and properties. Journal of Materials Science & Technology, 2023. 142: 196-215.
- [10] Otto, F., et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): 5743-5755.
- [11] Öztürk, S., et al., Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy. Journal of Alloys and Compounds, 2022. 903: 163867.
- [12] Shahmir, H., et al., Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science and Engineering: A, 2016. 676: 294-303.
- [13] Xing, Y., et al., Revealing strengthening contribution of grain refinement and phase precipitation in CrMnFeCoNi high-entropy alloy prepared from different powders. Materials Science and Engineering: A, 2022. 860: 144297.
- [14] Liu, B., et al., Effect of cold working and annealing on microstructure and properties of powder metallurgy high entropy alloy. Science China Technological Sciences, 2018. 61(2): 197-203.
- [15] Šebesta, J., K. Carva, and D. Legut, Evolution of the Curie temperature for a substituted Cantor alloy. Physical Review B, 2021. 103(6): 064407.
- [16] Cantor, B., Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021. 120: 100754.
- [17] Erdogan, A., et al., Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum, 2021. 187: 110143.
- [18] Oh, S.M. and S.I. Hong, Microstructure and Mechanical Properties of Equitomic CoCrFeCuNi High Entropy Alloy. Key Engineering Materials, 2018. 765: 149-154.
- [19] Qin, G., et al., Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. Journal of Materials Science & Technology, 2018. 34(2): 365-369.
- [20] Sünbül, S.E., et al., Determination of structural, tribological, isothermal oxidation and corrosion properties of Al–Co–Cr–Fe–Ni–Ti–Cu high-entropy alloy. Vacuum, 2021. 187: 110072.
- [21] Li, Z., Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Materialia, 2019. 164: 400-412.
- [22] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: 448-511.
- [23] Anand, G., R. Goodall, and C.L. Freeman, Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scripta Materialia, 2016. 124: 90-94.
- [24] Praveen, S., B.S. Murty, and R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Materials Science and Engineering: A, 2012. 534: 83-89.
- [25] Manzoni, A., et al., Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. Journal of Alloys and Compounds, 2013. 552: 430-436.
- [26] Choi, W.-M., et al., Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Metals and Materials International, 2017. 23(5): 839-847.
- [27] Veerappan, G., et al., Effect of Copper on Mechanical Properties and Corrosion Behavior of Powder Metallurgy Processed Ni–Co–Cr–Fe–Mn–Cux High Entropy Alloy. Arabian Journal for Science and Engineering, 2022.
- [28] Takeuchi, A. and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Journal of Materials Transactions, 2000. 41(11): 1372-1378.
- [29] Zhang, H., et al., Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. Journal of Alloys and Compounds, 2014. 600: 210-214.
- [30] Thangaraju, S., T.E. Bouzy, and A. Hazotte, Phase Stability of a Mechanically Alloyed CoCrCuFeNi High Entropy Alloy. Advanced Engineering Materials, 2017. 19(8).
- [31] Zhang, D., C. Kenel, and D.C. Dunand, Microstructure and mechanical properties of 3D ink-extruded CoCrCuFeNi microlattices. Acta Materialia, 2022. 238: 118187.