Research Article
BibTex RIS Cite

Air Quality Changes Caused by Vehicles: An Assessment Based on PM10, NO₂, SO₂ and CO Parameters

Year 2025, Volume: 13 Issue: 3, 1100 - 1112, 30.09.2025
https://doi.org/10.29109/gujsc.1685807

Abstract

It is of great importance to determine the causes of air pollution, which is one of the most important environmental problems, and to reveal the ways in which it will be reduced. To reduce traffic-induced air pollution, which is one of the top air pollutants, electric car production has increased in recent years and has begun to take its position in traffic. Electric vehicles, both in terms of reducing air pollutant emissions and contributing to energy consumption, offer a potential alternative mechanism for a cleaner and more sustainable environment. In this context, it is necessary to observe the number of electric vehicles and their changes on air quality emissions. In this study, the effects of provinces, which account for 65% of the number of registered vehicles in Turkey, on air quality emissions are analyzed for the years 2016-2024. The change in air quality emissions of PM10, NO₂, SO₂ and CO over the years for the selected provinces and the effect of electric vehicle use on this change were evaluated. A significant and gradual decrease is observed in the selected air quality parameters. It is concluded that this trend is directly related to the transformation in vehicle technologies.

References

  • [1] Demirbaş, M., & Aydın, R. (2020). 21. Yüzyılın en büyük tehdidi: küresel iklim değişikliği. Ecological Life Sciences, 15(4), 163-179.
  • [2] Ding, X., Gong, K., & Li, A. (2024). Electric vehicle adoption and counter-urbanization: Environmental impacts and promotional effects. Transportation Research Part D: Transport and Environment, 132, 104260.
  • [3] Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64-77.
  • [4] Chi, J. (2025). Impacts of electric vehicles and environmental policy stringency on transport CO2 emissions. Case Studies on Transport Policy, 19, 101330.
  • [5] Köksal, E., Ardiyok, S., & Ikiler, B. (2021). Elektrikli araçlar için şarj altyapısı–Türkiye için fırsatlar ve öneriler (Charging infrastructure for electric vehicles–opportunities and suggestions for Turkey). Baseak CORE Papers, (11).
  • [6] Ding, N., Prasad, K., & Lie, T. T. (2017). The electric vehicle: a review. International Journal of Electric and Hybrid Vehicles, 9(1), 49-66.
  • [7] Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129-145.
  • [8] Tang, B., Jiang, H., Zhuge, W., & Sun, L. (2024). Adaptability and environmental impact of CO2/R41 mixture in heat pump air conditioning systems for electric vehicles. Applied Thermal Engineering, 250, 123463
  • [9] Lin, J. (2025). Effects of electric vehicle demonstration and promotion policy on air pollution: Evidence from China. Transport Policy, 162, 1-19.
  • [10] Suganya, R., Joseph, L. L., & Kollem, S. (2024). Understanding lithium-ion battery management systems in electric vehicles: Environmental and health impacts, comparative study, and future trends: A review. Results in Engineering, 24, 103047.
  • [11] Safarian, S. (2023). Environmental and energy impacts of battery electric and conventional vehicles: A study in Sweden under recycling scenarios. Fuel Communications, 14, 100083.
  • [12] Kang, H., Jung, S., Kim, H., An, J., Hong, J., Yeom, S., & Hong, T. (2025). Life-cycle environmental impacts of reused batteries of electric vehicles in buildings considering battery uncertainty. Renewable and Sustainable Energy Reviews, 207, 114936.
  • [13] Shang, H., Sun, Y., Huang, D., & Meng, F. (2024). Life cycle assessment of atmospheric environmental impact on the large-scale promotion of electric vehicles in China. Resources, Environment and Sustainability, 15, 100148.
  • [14] Mehlig, D., Staffell, I., Stettler, M., & ApSimon, H. (2023). Accelerating electric vehicle uptake favours greenhouse gas over air pollutant emissions. Transportation Research Part D: Transport and Environment, 124, 103954.
  • [15] Türkiye İstatistik Kurumu (TUİK). Motorlu Kara Taşıtları. [Veri Dosyası] https://data.tuik.gov.tr/Search/Search?text=motorlu%20kara%20ta%C5%9F%C4%B1tlar%C4%B1 (Son Erişim Tarihi: 25.04.2025)
  • [16] EV Production Quarterly Outlook rho motion. https://rhomotion.com/research/ev-production-quarterly-outlook/ (Son Erişim Tarihi: 31.07.2025)
  • [17] Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005.
  • [18] Pipitone, E., Caltabellotta, S., & Occhipinti, L. (2021). A life cycle environmental impact comparison between traditional, hybrid, and electric vehicles in the European context. Sustainability, 13(19), 10992.
  • [19] Schmid, A. (2017). An analysis of the environmental impact of electric vehicles. Missouri S&T’s Peer to Peer, 1(2), 2.
  • [20] Ferrero, E., Alessandrini, S., & Balanzino, A. (2016). Impact of the electric vehicles on the air pollution from a highway. Applied energy, 169, 450-459.
  • [21] Ercan, T., Onat, N. C., Keya, N., Tatari, O., Eluru, N., & Kucukvar, M. (2022). Autonomous electric vehicles can reduce carbon emissions and air pollution in cities. Transportation Research Part D: Transport and Environment, 112, 103472.
  • [22] Sharma, A., Shiwang, J., Lee, A., & Peng, W. (2023). Equity implications of electric vehicles: A systematic review on the spatial distribution of emissions, air pollution and health impacts. Environmental Research Letters, 18(5), 053001.
  • [23] WHO global air quality guidelines. Particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Helath Organization; 2021. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
  • [24] Li, J. et al. (2021). The Role of Electric Vehicles in Reducing Urban Air Pollution in China. Environmental Science & Technology, 55(8), 5022–5030.
  • [25] European Environment Agency (EEA). (2022). Air quality in Europe — 2022 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2022

Taşıt Kaynaklı Hava Kalitesi Değişimi: PM10, NO₂, SO₂ ve CO Parametrelerine Dayalı Bir Değerlendirme

Year 2025, Volume: 13 Issue: 3, 1100 - 1112, 30.09.2025
https://doi.org/10.29109/gujsc.1685807

Abstract

En önemli çevre problemlerinin başında yer alan hava kirliliğinin nedenlerinin belirlenip hangi yollarla azaltılacağının ortaya konulması büyük öneme sahiptir. Hava kirleticilerin başında yer alan trafik kaynaklı hava kirliliğinin azaltılması için son yıllarda elektrikli araç üretimi hız kazanarak trafikte yerini almaya başlamıştır. Elektrikli araçlar hem hava kirletici emisyonlarının azaltılması hem de enerji tüketimine katkı sunması bakımından daha temiz ve sürdürülebilir bir çevre ile potansiyel alternatif bir mekanizma olarak hizmet vermektedir. Bu bağlamda elektrikli araç sayıları ve bunun hava kalitesi emisyonları üzerindeki değişimlerinin gözlenmesi gerekmektedir. Bu çalışmada, Türkiye genelinde trafiğe kayıtlı araç sayılarının %65’lik kısmını oluşturan illerin hava kalitesi emisyonlarına olan etkileri 2016-2024 yılları için incelenmiştir. Hava kalitesi emisyonlarından PM10, NO₂, SO₂ ve CO' nin seçilen iller için yıllara göre değişimi ve bu değişime elektrikli araç kullanımının etkisi değerlendirilmiştir. Seçilen hava kalitesi parametrelerinde belirgin ve kademeli bir azalma gözlemlenmiştir. Bu eğilimin de araç teknolojilerindeki dönüşümle doğrudan ilişkili olduğu kanaatine varılmıştır.

References

  • [1] Demirbaş, M., & Aydın, R. (2020). 21. Yüzyılın en büyük tehdidi: küresel iklim değişikliği. Ecological Life Sciences, 15(4), 163-179.
  • [2] Ding, X., Gong, K., & Li, A. (2024). Electric vehicle adoption and counter-urbanization: Environmental impacts and promotional effects. Transportation Research Part D: Transport and Environment, 132, 104260.
  • [3] Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64-77.
  • [4] Chi, J. (2025). Impacts of electric vehicles and environmental policy stringency on transport CO2 emissions. Case Studies on Transport Policy, 19, 101330.
  • [5] Köksal, E., Ardiyok, S., & Ikiler, B. (2021). Elektrikli araçlar için şarj altyapısı–Türkiye için fırsatlar ve öneriler (Charging infrastructure for electric vehicles–opportunities and suggestions for Turkey). Baseak CORE Papers, (11).
  • [6] Ding, N., Prasad, K., & Lie, T. T. (2017). The electric vehicle: a review. International Journal of Electric and Hybrid Vehicles, 9(1), 49-66.
  • [7] Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129-145.
  • [8] Tang, B., Jiang, H., Zhuge, W., & Sun, L. (2024). Adaptability and environmental impact of CO2/R41 mixture in heat pump air conditioning systems for electric vehicles. Applied Thermal Engineering, 250, 123463
  • [9] Lin, J. (2025). Effects of electric vehicle demonstration and promotion policy on air pollution: Evidence from China. Transport Policy, 162, 1-19.
  • [10] Suganya, R., Joseph, L. L., & Kollem, S. (2024). Understanding lithium-ion battery management systems in electric vehicles: Environmental and health impacts, comparative study, and future trends: A review. Results in Engineering, 24, 103047.
  • [11] Safarian, S. (2023). Environmental and energy impacts of battery electric and conventional vehicles: A study in Sweden under recycling scenarios. Fuel Communications, 14, 100083.
  • [12] Kang, H., Jung, S., Kim, H., An, J., Hong, J., Yeom, S., & Hong, T. (2025). Life-cycle environmental impacts of reused batteries of electric vehicles in buildings considering battery uncertainty. Renewable and Sustainable Energy Reviews, 207, 114936.
  • [13] Shang, H., Sun, Y., Huang, D., & Meng, F. (2024). Life cycle assessment of atmospheric environmental impact on the large-scale promotion of electric vehicles in China. Resources, Environment and Sustainability, 15, 100148.
  • [14] Mehlig, D., Staffell, I., Stettler, M., & ApSimon, H. (2023). Accelerating electric vehicle uptake favours greenhouse gas over air pollutant emissions. Transportation Research Part D: Transport and Environment, 124, 103954.
  • [15] Türkiye İstatistik Kurumu (TUİK). Motorlu Kara Taşıtları. [Veri Dosyası] https://data.tuik.gov.tr/Search/Search?text=motorlu%20kara%20ta%C5%9F%C4%B1tlar%C4%B1 (Son Erişim Tarihi: 25.04.2025)
  • [16] EV Production Quarterly Outlook rho motion. https://rhomotion.com/research/ev-production-quarterly-outlook/ (Son Erişim Tarihi: 31.07.2025)
  • [17] Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005.
  • [18] Pipitone, E., Caltabellotta, S., & Occhipinti, L. (2021). A life cycle environmental impact comparison between traditional, hybrid, and electric vehicles in the European context. Sustainability, 13(19), 10992.
  • [19] Schmid, A. (2017). An analysis of the environmental impact of electric vehicles. Missouri S&T’s Peer to Peer, 1(2), 2.
  • [20] Ferrero, E., Alessandrini, S., & Balanzino, A. (2016). Impact of the electric vehicles on the air pollution from a highway. Applied energy, 169, 450-459.
  • [21] Ercan, T., Onat, N. C., Keya, N., Tatari, O., Eluru, N., & Kucukvar, M. (2022). Autonomous electric vehicles can reduce carbon emissions and air pollution in cities. Transportation Research Part D: Transport and Environment, 112, 103472.
  • [22] Sharma, A., Shiwang, J., Lee, A., & Peng, W. (2023). Equity implications of electric vehicles: A systematic review on the spatial distribution of emissions, air pollution and health impacts. Environmental Research Letters, 18(5), 053001.
  • [23] WHO global air quality guidelines. Particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Helath Organization; 2021. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
  • [24] Li, J. et al. (2021). The Role of Electric Vehicles in Reducing Urban Air Pollution in China. Environmental Science & Technology, 55(8), 5022–5030.
  • [25] European Environment Agency (EEA). (2022). Air quality in Europe — 2022 report. https://www.eea.europa.eu/publications/air-quality-in-europe-2022
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention, Energy, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Aslıhan Kurnuç Seyhan 0000-0002-7614-7303

Neşe Ertugay 0000-0003-2169-8324

Early Pub Date August 15, 2025
Publication Date September 30, 2025
Submission Date April 28, 2025
Acceptance Date July 18, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Kurnuç Seyhan, A., & Ertugay, N. (2025). Taşıt Kaynaklı Hava Kalitesi Değişimi: PM10, NO₂, SO₂ ve CO Parametrelerine Dayalı Bir Değerlendirme. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(3), 1100-1112. https://doi.org/10.29109/gujsc.1685807

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526