Research Article
BibTex RIS Cite

Basıncın ve Sıcaklığın Dış Elektrik Alan Altındaki Kübik Kuantum Noktasının Üçüncü Harmonik Üretimi Üzerine Etkisi

Year 2019, Volume: 9 Issue: 1, 80 - 87, 15.01.2019
https://doi.org/10.17714/gumusfenbil.403764

Abstract

Düşük boyutlu sistemler, yük taşıyıcılarının nano
ölçekte sınırlandırıldığı yapılardır. Yük taşıyıcı hareketinin üç boyutta
sınırlandırıldığı yapılar kuantum noktalar olarak bilinir ve bu yapılar
moleküler biyoloji uygulamalarında, tıbbi görüntülemede, bilgi depolamada,
optik ve iletişim gibi aygıt uygulamalarında önemli bir rol oynar. Bu
çalışmada, dış elektrik alan altındaki kübik kuantum noktasının üçüncü harmonik
üretimi üzerine basıncın ve sıcaklığın etkisi teorik olarak incelenmiştir. Sayısal
hesaplamalar etkin kütle yaklaşımı altında yapılmıştır. Yapının taban durumu ve
uyarılmış durumların enerji özdeğerleri hesaplanmış ve elde edilen bu değerler
optik özelliğin hesaplanmasında kullanılmıştır. Aynı zamanda, kübik kuantum
nokta boyutu ve durulma oranı etkisi de incelendi. Sonuçlar basınç ve
sıcaklığın üçüncü harmonik üretimi üzerine büyük bir etkisinin olduğunu
göstermektedir.

References

  • Ahn, D. ve Chuang, S. L. 1987. Calculation of Linear and Nonlinear. Intersubband Optical Absorptions ina Quantum Well Mode1 with an Applied Electric Field. IEEE Journal of Quantum Electronics, 23, 2196-2204.
  • Dane, C., Akbas, H., Talip, N. ve Kasapoglu, K., 2007. Effect of spatial electric field on the sub-band energy in a cubic GaAs/AlAs quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 39, 95-98.
  • Duque, C. A., Mora-Ramos, M. E., Kasapoglu, E., Sari, H. ve Sokmen, I. 2012. Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. Physica Status Solidi (b), 249, 118-127.
  • Karabulut, I., Unlu, S. ve Safak, H. 2005. Calculation of the changes in the absorption and refractive index for intersubband optical transitions in a quantum box. Physica Status Solidi (b), 242, 2902-2909.
  • Karabulut, I. ve Baskoutas, S.. 2009. Second and Third Harmonic Generation Susceptibilities of Spherical Quantum Dots: Effects of Impurities, Electric Field and Size. Journal of Computational and Theoretical Nanoscience, 6, 153-156.
  • Khordad, R., Rezaei, G., Vaseghi, B., Taghizadeh, F. ve Kenary H. A. 2011. Study of optical properties in a cubic quantum dot. Optical and Quantum Electronics, 42, 587-600.
  • Kirak, M. ve Yilmaz, S. 2015. Impurity position effects on the linear and nonlinear optical properties of the cubic quantum dot under an external electric field. Journal of Physics D: Applied Physics, 48, 325301-325301.
  • Kouwenhoven, L. ve Marcus, C. 1998. Quantum dots. PhysicsWorld, 11, 35-39.
  • Li, E. H. 1996. Interdiffusion as a means of fabricating parabolic quantum wells for the enhancement of the nonlinear third-order susceptibility by triple resonance. Applied Physics Letters, 69, 460.
  • Maksym, P.A. ve Chakrabotry, T. 1990. Quantum dots in a magnetic field: role of electron-electron interactions. American Physical Society, 65, 108-111.
  • Rosencher, E. ve Bois, Ph. 1991. Model system for optical nonlinearities: Asymmetric quantum wells. Physical Review B, 44, 11315.
  • Sali, A. ve Satori, H. 2014. The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices and Microstructures, 69, 38-52.
  • Samara, G. A. 1983. Temperature and pressure dependences of the dielectric constants of semiconductors. Physical Review B, 27, 3494.
  • Shao, S., Guo, K. X., Zhang, Z. H., Li, N. ve Peng, C. 2010. Studies on the third-harmonic generations in cylindrical quantum dots with an applied electric field. Superlattices and Microstructures, 48, 541-549.
  • Sibilia, C., Benson, T., Marciniak, M., Szoplik, T. 2008. Photonic Crystals: Physics and Technology, 1st edn, Springer, Milano.
  • Spector, H. N. ve Lee, J., (2007). Stark effect in the optical absorption in cubical quantum boxes. Physica B: Condensed Matter, 393, 94-99.
  • Unlu, S., Karabulut, I. ve Safak, H. 2006. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E: Low-dimensional Systems and Nanostructures, 33, 319-324.
  • Wang, G. ve Guo, K. X. 2001. Excitonic effects on the third-harmonic generation in parabolic quantum dots. Journal of Physics: Condensed Matter,13, 8197-8206.
  • Wang, G. 2005. Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field. Physical Review B, 72, 155329.
  • Wang, G. ve Guo, Q. 2008. Third-harmonic generation in cylindrical parabolic quantum wires with static magnetic fields. Physica B: Condensed Matter, 403, 37-43
  • Welber, B., Cardona, M., Kim, C. K. ve Rodriquez, S. 1975. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Physical Review B, 12, 5729.
  • Yildirim, H. ve Tomak, M. 2006. Third-harmonic generation in a quantum well with adjustable asymmetry under an electric field. Physica Status Solidi (b), 243, 4057-4063.
  • Yu, Y. B. ve Wang, H. J. 2011. Third-harmonic generation in two-dimensional pseudo-dot system with an applied magnetic field. Superlattices and Microstructures, 50, 252-260.
  • Zaluzny, M. ve Bondarenko, V. 1996. Influence of the depolarization effect on third-harmonic generation in quantum wells. J. Appl. Phys. 79, 6750-6754.
  • Zhang, Z. H., Guo, K. X., Chen, B., Wang, R. Z. ve Kang, M. W. 2009. Third-harmonic generation in cubical quantum dots. Superlattices and Microstructures, 46, 672-678.

The Effect of Pressure and Temperature on the Third Harmonic Generation of Cubical Quantum Dot Under External Electric Field

Year 2019, Volume: 9 Issue: 1, 80 - 87, 15.01.2019
https://doi.org/10.17714/gumusfenbil.403764

Abstract

Low
dimensional systems are structures in which the charge carriers are confined in
nanoscale. The structures that the movements of charge carriers are restricted
in three dimensions are known as quantum dot and these structures play
important role in application of molecular biology, medical imaging, storage of
data, application devices such as optics and communication. In this study, the
effects of pressure and temperature on the third harmonic generation of cubic
quantım dot under external electric field theoretically have been investigated.
Numerical calculations have been done within the effective-mass approximation. The
energy eigenvalues of the ground state and excited states of the structure have
been calculated and the obtained these values have been used in calculation of
optical properties. Also,the effects of 
size of cubical quantum dot and the relaxation rate have been
investigated. Results show that  the
pressure and temperature has a great influence on third harmonic
generation.  

References

  • Ahn, D. ve Chuang, S. L. 1987. Calculation of Linear and Nonlinear. Intersubband Optical Absorptions ina Quantum Well Mode1 with an Applied Electric Field. IEEE Journal of Quantum Electronics, 23, 2196-2204.
  • Dane, C., Akbas, H., Talip, N. ve Kasapoglu, K., 2007. Effect of spatial electric field on the sub-band energy in a cubic GaAs/AlAs quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 39, 95-98.
  • Duque, C. A., Mora-Ramos, M. E., Kasapoglu, E., Sari, H. ve Sokmen, I. 2012. Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. Physica Status Solidi (b), 249, 118-127.
  • Karabulut, I., Unlu, S. ve Safak, H. 2005. Calculation of the changes in the absorption and refractive index for intersubband optical transitions in a quantum box. Physica Status Solidi (b), 242, 2902-2909.
  • Karabulut, I. ve Baskoutas, S.. 2009. Second and Third Harmonic Generation Susceptibilities of Spherical Quantum Dots: Effects of Impurities, Electric Field and Size. Journal of Computational and Theoretical Nanoscience, 6, 153-156.
  • Khordad, R., Rezaei, G., Vaseghi, B., Taghizadeh, F. ve Kenary H. A. 2011. Study of optical properties in a cubic quantum dot. Optical and Quantum Electronics, 42, 587-600.
  • Kirak, M. ve Yilmaz, S. 2015. Impurity position effects on the linear and nonlinear optical properties of the cubic quantum dot under an external electric field. Journal of Physics D: Applied Physics, 48, 325301-325301.
  • Kouwenhoven, L. ve Marcus, C. 1998. Quantum dots. PhysicsWorld, 11, 35-39.
  • Li, E. H. 1996. Interdiffusion as a means of fabricating parabolic quantum wells for the enhancement of the nonlinear third-order susceptibility by triple resonance. Applied Physics Letters, 69, 460.
  • Maksym, P.A. ve Chakrabotry, T. 1990. Quantum dots in a magnetic field: role of electron-electron interactions. American Physical Society, 65, 108-111.
  • Rosencher, E. ve Bois, Ph. 1991. Model system for optical nonlinearities: Asymmetric quantum wells. Physical Review B, 44, 11315.
  • Sali, A. ve Satori, H. 2014. The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices and Microstructures, 69, 38-52.
  • Samara, G. A. 1983. Temperature and pressure dependences of the dielectric constants of semiconductors. Physical Review B, 27, 3494.
  • Shao, S., Guo, K. X., Zhang, Z. H., Li, N. ve Peng, C. 2010. Studies on the third-harmonic generations in cylindrical quantum dots with an applied electric field. Superlattices and Microstructures, 48, 541-549.
  • Sibilia, C., Benson, T., Marciniak, M., Szoplik, T. 2008. Photonic Crystals: Physics and Technology, 1st edn, Springer, Milano.
  • Spector, H. N. ve Lee, J., (2007). Stark effect in the optical absorption in cubical quantum boxes. Physica B: Condensed Matter, 393, 94-99.
  • Unlu, S., Karabulut, I. ve Safak, H. 2006. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E: Low-dimensional Systems and Nanostructures, 33, 319-324.
  • Wang, G. ve Guo, K. X. 2001. Excitonic effects on the third-harmonic generation in parabolic quantum dots. Journal of Physics: Condensed Matter,13, 8197-8206.
  • Wang, G. 2005. Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field. Physical Review B, 72, 155329.
  • Wang, G. ve Guo, Q. 2008. Third-harmonic generation in cylindrical parabolic quantum wires with static magnetic fields. Physica B: Condensed Matter, 403, 37-43
  • Welber, B., Cardona, M., Kim, C. K. ve Rodriquez, S. 1975. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Physical Review B, 12, 5729.
  • Yildirim, H. ve Tomak, M. 2006. Third-harmonic generation in a quantum well with adjustable asymmetry under an electric field. Physica Status Solidi (b), 243, 4057-4063.
  • Yu, Y. B. ve Wang, H. J. 2011. Third-harmonic generation in two-dimensional pseudo-dot system with an applied magnetic field. Superlattices and Microstructures, 50, 252-260.
  • Zaluzny, M. ve Bondarenko, V. 1996. Influence of the depolarization effect on third-harmonic generation in quantum wells. J. Appl. Phys. 79, 6750-6754.
  • Zhang, Z. H., Guo, K. X., Chen, B., Wang, R. Z. ve Kang, M. W. 2009. Third-harmonic generation in cubical quantum dots. Superlattices and Microstructures, 46, 672-678.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muharrem Kirak

Publication Date January 15, 2019
Submission Date March 9, 2018
Acceptance Date June 22, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Kirak, M. (2019). Basıncın ve Sıcaklığın Dış Elektrik Alan Altındaki Kübik Kuantum Noktasının Üçüncü Harmonik Üretimi Üzerine Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 80-87. https://doi.org/10.17714/gumusfenbil.403764