Research Article
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 4, 327 - 337, 01.12.2019
https://doi.org/10.15671/hjbc.515739

Abstract

References

  • [1] J. Duraiyan, R. Govindarajan, K. Kaliyappan, M. Palanisamy, Applications of immunohistochemistry, J. Pharm. BioAllied Sci. 4(Suppl. 2) (2012) S307.
  • [2] D. Shin, N. Vigneswaran, A. Gillenwater, R. Richards-Kortum, Advances in fluorescence imaging techniques to detect oral cancer and its precursors, Future Oncol. 6(7) (2010) 1143-1154.
  • [3] A. Gündoğdu, E.B. Aydın, M.K. Sezgintürk, A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum, Anal. Biochem. 537, 84-92 (2017).
  • [4] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuators, B, 270 (2018) 18-27.
  • [5] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosen. Bioelectron. 121 (2018) 80-89.
  • [6] J. Zhou, J. Li, J. Chen, Y. Liu, W. Gao, Y. Ding, Over-expression of CDH22 is associated with tumor progression in colorectal cancer, Tumor Biol. 30(3) (2009) 130-140.
  • [7] E. Martín-Sánchez, S. Mendaza, A. Ulazia-Garmendia, I. Monreal-Santesteban, A. Córdoba, F. Vicente-García, I. Blanco-Luquin, S. De La Cruz, A. Aramendia, D. Guerrero-Setas, CDH22 hypermethylation is an independent prognostic biomarker in breast cancer, Clin. Epigenet. 9(1) (2017) 7.
  • [8] B. Piche, S. Khosravi, M. Martinka, V. Ho, G. Li, CDH22 expression is reduced in metastatic melanoma, Am. J. Cancer Res. 1(2) (2011) 233.
  • [9] M. Aydın, E.B. Aydın, M.K. Sezgintürk, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron. 126 (2019) 230-239.
  • [10] X.R. Cheng, B.Y. Hau, T. Endo, K. Kerman, Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance, Biosens. Bioelectron. 53 (2014) 513-518.
  • [11] E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology, TrAC, Trends Anal. Chem. 97, 309-315 (2017).
  • [12] C.M. Pandey, S. Dewan, S. Chawla, B.K. Yadav, G. Sumana, B.D. Malhotra, Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection, Anal. Chim. Acta 937 (2016) 29-38.
  • [13] S. Kumar, S. Kumar, S. Tiwari, S. Augustine, S. Srivastava, B.K. Yadav, B.D. Malhotra, Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection, Sens. Actuators, B, 235 (2016) 1-10.
  • [14] I. Tiwari, M. Singh, C.M. Pandey, G. Sumana, Electrochemical genosensor based on graphene oxide modified iron oxide–chitosan hybrid nanocomposite for pathogen detection, Sens. Actuators, B, 206 (2015) 276-283.
  • [15] A. Sharma, D. Baral, H. Bohidar, P.R. Solanki, Oxalic acid capped iron oxide nanorods as a sensing platform, Chem.-Biol. Interact. 238 (2015) 129-137.
  • [16] A. Singh, M. Choudhary, M. Singh, H. Verma, S.P. Singh, K. Arora, DNA functionalized direct electro-deposited gold nanoaggregates for efficient detection of Salmonella typhi, Bioelectrochemistry 105 (2015) 7-15.
  • [17] A.K. Yagati, J.-C. Pyun, J. Min, S. Cho, Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor, Bioelectrochemistry 107 (2016) 37-44.
  • [18] L. Yang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157: H7, Biosens. Bioelectron. 20(7) (2005) 1407-1416.
  • [19] M.B. dos Santos, S. Azevedo, J. Agusil, B. Prieto-Simon, C. Sporer, E. Torrents, A. Juárez, V. Teixeira, J. Samitier, Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria, Bioelectrochemistry 101 (2015) 146-152.
  • [20] E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron. 97, 169-176 (2017).
  • [21] S. Komathi, A.I. Gopalan, K.-P. Lee, Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase, Biosens. Bioelectron. 24(10) (2009) 3131-3134.
  • [22] W. Chu, Q. Zhou, S. Li, W. Zhao, N. Li, J. Zheng, Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film, Appl. Surf. Sci. 353 (2015) 425-432.
  • [23] N. Prabhakar, Z. Matharu, B. Malhotra, Polyaniline Langmuir–Blodgett film based aptasensor for ochratoxin A detection, Biosens. Bioelectron. 26(10) (2011) 4006-4011.
  • [24] M. Ozmen, K. Can, M. Ersoz, Immobilization of albumin on indium-tin oxide (ITO) surface via isocyanate linkage, J. Electroanal. Chem. 633(1) (2009) 228-234.
  • [25] M.Ç. Canbaz, M.K. Sezgintürk, Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection, Anal. Biochem. 446 (2014) 9-18.
  • [26] M. Khan, X. Liu, J. Zhu, F. Ma, W. Hu, X. Liu, Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis, Biosens. Bioelectron. 108 (2018) 76-81.
  • [27] M.Z.H. Khan, Effect of ITO surface properties on SAM modification: A review toward biosensor application, Cogent Engineering 3(1) (2016) 1170097.
  • [28] H. Törer, E.B. Aydın, M.K. Sezgintürk, A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode, Anal. Chim. Acta 1024 (2018) 65-72.
  • [29] D. Guo, M. Zhuo, X. Zhang, C. Xu, J. Jiang, F. Gao, Q. Wan, Q. Li, T. Wang, Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1, Anal. Chim. Acta 773 (2013) 83-88.
  • [30] A.K. Yagati, T. Lee, J. Min, J.-W. Choi, Electrochemical performance of gold nanoparticle–cytochrome c hybrid interface for H 2 O 2 detection, Colloids Surf., B, 92 (2012) 161-167.
  • [31] E. Bahadır, M. Sezgintürk, Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1, Analyst 141(19) (2016) 5618-5626.
  • [32] E.B. Aydın, M.K. Sezgintürk, A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer, Talanta 172 (2017) 162-170.
  • [33] M.N.S. Karaboğa, M.K. Sezgintürk, A novel silanization agent based single used biosensing system: Detection of C-reactive protein as a potential Alzheimer’s disease blood biomarker, J. Pharm. Biomed. Anal. 154 (2018) 227-235.
  • [34] C. Haensch, S. Hoeppener, U.S. Schubert, Chemical modification of self-assembled silane based monolayers by surface reactions, Chem. Soc. Rev. 39(6) (2010) 2323-2334.
  • [35] J. Muñoz, R. Montes, M. Baeza, Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing, TrAC, Trends Anal. Chem. 97 (2017) 201-215.
  • [36] E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta 1039 (2018) 41-50.
  • [37] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A Disposable Immunosensor Using ITO Based Electrode Modified by a Star-Shaped Polymer for Analysis of Tumor Suppressor Protein p53 In Human Serum, Biosens. Bioelectron. 107, 1-9 (2018).
  • [38] X.Y. Zhang, L.Y. Zhou, H.Q. Luo, N.B. Li, A sensitive and label-free impedimetric biosensor based on an adjunct probe, Anal. Chim. Acta 776 (2013) 11-16.
  • [39] M. Labib, S. Martić, P.O. Shipman, H.-B. Kraatz, Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface, Talanta 85(1) (2011) 770-778.
  • [40] A.S. Bandarenka, Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst 138(19) (2013) 5540-5554.
  • [41] M. Labib, P.O. Shipman, S. Martić, H.-B. Kraatz, Towards an early diagnosis of HIV infection: an electrochemical approach for detection ofHIV-1 reverse transcriptase enzyme, Analyst 136(4) (2011) 708-715.
  • [42] M. Behpour, S.M. Ghoreishi, E. Honarmand, M. Salavati-Niasari, Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl) methylidene] amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl) imino] methyl} phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid, Analyst 136(9) (2011) 1979-1986.
  • [43] S. Wang, Y. Zhang, J. Yu, X. Song, S. Ge, M. Yan, Application of indium tin oxide device in gold-coated magnetic iron solid support enhanced electrochemiluminescent immunosensor for determination of carcinoma embryonic antigen, Sensors and Actuators B: Sens. Actuators, B,
  • [44] L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors, Biosens. Bioelectron. 16(9-12) (2001) 675-687.
  • [45] Y. Huang, M.C. Bell, I.I. Suni, Impedance biosensor for peanut protein Ara h 1, Anal. Chem. 80(23) (2008) 9157-9161.

A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode

Year 2019, Volume: 47 Issue: 4, 327 - 337, 01.12.2019
https://doi.org/10.15671/hjbc.515739

Abstract

Bu çalışmada, anti-CDH 22 antikoru
ve CDH 22 antijeni arasındaki spesifik immüno-reaksiyona dayanan, kadherin
benzeri protein (CDH 22) biyobelirtecinin tespiti için yeni bir elektrokimyasal
etiketsiz immünosensör üretilmiştir. Geliştirilen immünosensör, anti-CDH 22 antikorlarının
3-siyanopropiltrimetoksisilan (CPTMS) ile modifiye edilmiş ITO substratı
üzerinde immobilizasyonu ile oluşturulmuştur. Anti-CDH 22 antikorlarının CPTMS
silanizasyon ajanına etkili bağlanması, morfolojik karakterizasyon (Taramalı
Elektron Mikroskobu (SEM), Atomik Kuvvet Mikroskobu (AFM)) ve elektrokimyasal
karakterizasyon (Elektrokimyasal İmpedans Spektroskopisi (EIS), Siklik
Voltammetri (CV) kullanılarak incelendi. Optimum deney koşulları altında, ITO /
CPTMS ile modifiye edilmiş elektrot, anti-CDH 22 antikor bağlanması için iyi
bir bağlayıcıydır. Ek olarak, CPTMS modifiye elektrot CDH 22 antijen tespiti
için etkili bir yüzey sunmuştur. İmmünosensör, geniş bir lineer tespit aralığı
(0.03-3 pg / mL) ile düşük tespit limiti (9 fg / mL) ile sahipti. Ayrıca, iyi
tekrarlanabilirlik, mükemmel tekrarlanabilirlik ve uzun depolama kararlılığına
sahipti. Ek olarak, önerilen immünosensörün pratik uygulanabilirliği, insan
serum numuneleri kullanılarak araştırıldı. İnsan serum numuneleri geri kazanım
sonuçları (% 99,16 -% 101,94) önerilen biyosensörün doğruluğunu göstermektedir.
Sonuç olarak, CPTMS, biyosensör yapımı için umut verici bir platform olabilir
ve bu önerilen immünosensör gerçek insan serum analizi için uygulanabilir.



 

References

  • [1] J. Duraiyan, R. Govindarajan, K. Kaliyappan, M. Palanisamy, Applications of immunohistochemistry, J. Pharm. BioAllied Sci. 4(Suppl. 2) (2012) S307.
  • [2] D. Shin, N. Vigneswaran, A. Gillenwater, R. Richards-Kortum, Advances in fluorescence imaging techniques to detect oral cancer and its precursors, Future Oncol. 6(7) (2010) 1143-1154.
  • [3] A. Gündoğdu, E.B. Aydın, M.K. Sezgintürk, A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum, Anal. Biochem. 537, 84-92 (2017).
  • [4] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly sensitive electrochemical immunosensor based on polythiophene polymer with densely populated carboxyl groups as immobilization matrix for detection of interleukin 1β in human serum and saliva, Sens. Actuators, B, 270 (2018) 18-27.
  • [5] E.B. Aydın, M. Aydın, M.K. Sezgintürk, Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection, Biosen. Bioelectron. 121 (2018) 80-89.
  • [6] J. Zhou, J. Li, J. Chen, Y. Liu, W. Gao, Y. Ding, Over-expression of CDH22 is associated with tumor progression in colorectal cancer, Tumor Biol. 30(3) (2009) 130-140.
  • [7] E. Martín-Sánchez, S. Mendaza, A. Ulazia-Garmendia, I. Monreal-Santesteban, A. Córdoba, F. Vicente-García, I. Blanco-Luquin, S. De La Cruz, A. Aramendia, D. Guerrero-Setas, CDH22 hypermethylation is an independent prognostic biomarker in breast cancer, Clin. Epigenet. 9(1) (2017) 7.
  • [8] B. Piche, S. Khosravi, M. Martinka, V. Ho, G. Li, CDH22 expression is reduced in metastatic melanoma, Am. J. Cancer Res. 1(2) (2011) 233.
  • [9] M. Aydın, E.B. Aydın, M.K. Sezgintürk, Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly (phosphazene) modified disposable ITO electrode: A new fabrication strategy for biosensors, Biosens. Bioelectron. 126 (2019) 230-239.
  • [10] X.R. Cheng, B.Y. Hau, T. Endo, K. Kerman, Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance, Biosens. Bioelectron. 53 (2014) 513-518.
  • [11] E.B. Aydın, M.K. Sezgintürk, Indium Tin Oxide (ITO): A promising material in biosensing technology, TrAC, Trends Anal. Chem. 97, 309-315 (2017).
  • [12] C.M. Pandey, S. Dewan, S. Chawla, B.K. Yadav, G. Sumana, B.D. Malhotra, Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection, Anal. Chim. Acta 937 (2016) 29-38.
  • [13] S. Kumar, S. Kumar, S. Tiwari, S. Augustine, S. Srivastava, B.K. Yadav, B.D. Malhotra, Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection, Sens. Actuators, B, 235 (2016) 1-10.
  • [14] I. Tiwari, M. Singh, C.M. Pandey, G. Sumana, Electrochemical genosensor based on graphene oxide modified iron oxide–chitosan hybrid nanocomposite for pathogen detection, Sens. Actuators, B, 206 (2015) 276-283.
  • [15] A. Sharma, D. Baral, H. Bohidar, P.R. Solanki, Oxalic acid capped iron oxide nanorods as a sensing platform, Chem.-Biol. Interact. 238 (2015) 129-137.
  • [16] A. Singh, M. Choudhary, M. Singh, H. Verma, S.P. Singh, K. Arora, DNA functionalized direct electro-deposited gold nanoaggregates for efficient detection of Salmonella typhi, Bioelectrochemistry 105 (2015) 7-15.
  • [17] A.K. Yagati, J.-C. Pyun, J. Min, S. Cho, Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor, Bioelectrochemistry 107 (2016) 37-44.
  • [18] L. Yang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157: H7, Biosens. Bioelectron. 20(7) (2005) 1407-1416.
  • [19] M.B. dos Santos, S. Azevedo, J. Agusil, B. Prieto-Simon, C. Sporer, E. Torrents, A. Juárez, V. Teixeira, J. Samitier, Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria, Bioelectrochemistry 101 (2015) 146-152.
  • [20] E.B. Aydın, M. Aydın, M.K. Sezgintürk, A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples, Biosens. Bioelectron. 97, 169-176 (2017).
  • [21] S. Komathi, A.I. Gopalan, K.-P. Lee, Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase, Biosens. Bioelectron. 24(10) (2009) 3131-3134.
  • [22] W. Chu, Q. Zhou, S. Li, W. Zhao, N. Li, J. Zheng, Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film, Appl. Surf. Sci. 353 (2015) 425-432.
  • [23] N. Prabhakar, Z. Matharu, B. Malhotra, Polyaniline Langmuir–Blodgett film based aptasensor for ochratoxin A detection, Biosens. Bioelectron. 26(10) (2011) 4006-4011.
  • [24] M. Ozmen, K. Can, M. Ersoz, Immobilization of albumin on indium-tin oxide (ITO) surface via isocyanate linkage, J. Electroanal. Chem. 633(1) (2009) 228-234.
  • [25] M.Ç. Canbaz, M.K. Sezgintürk, Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection, Anal. Biochem. 446 (2014) 9-18.
  • [26] M. Khan, X. Liu, J. Zhu, F. Ma, W. Hu, X. Liu, Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis, Biosens. Bioelectron. 108 (2018) 76-81.
  • [27] M.Z.H. Khan, Effect of ITO surface properties on SAM modification: A review toward biosensor application, Cogent Engineering 3(1) (2016) 1170097.
  • [28] H. Törer, E.B. Aydın, M.K. Sezgintürk, A label-free electrochemical biosensor for direct detection of RACK 1 by using disposable, low-cost and reproducible ITO based electrode, Anal. Chim. Acta 1024 (2018) 65-72.
  • [29] D. Guo, M. Zhuo, X. Zhang, C. Xu, J. Jiang, F. Gao, Q. Wan, Q. Li, T. Wang, Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1, Anal. Chim. Acta 773 (2013) 83-88.
  • [30] A.K. Yagati, T. Lee, J. Min, J.-W. Choi, Electrochemical performance of gold nanoparticle–cytochrome c hybrid interface for H 2 O 2 detection, Colloids Surf., B, 92 (2012) 161-167.
  • [31] E. Bahadır, M. Sezgintürk, Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1, Analyst 141(19) (2016) 5618-5626.
  • [32] E.B. Aydın, M.K. Sezgintürk, A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer, Talanta 172 (2017) 162-170.
  • [33] M.N.S. Karaboğa, M.K. Sezgintürk, A novel silanization agent based single used biosensing system: Detection of C-reactive protein as a potential Alzheimer’s disease blood biomarker, J. Pharm. Biomed. Anal. 154 (2018) 227-235.
  • [34] C. Haensch, S. Hoeppener, U.S. Schubert, Chemical modification of self-assembled silane based monolayers by surface reactions, Chem. Soc. Rev. 39(6) (2010) 2323-2334.
  • [35] J. Muñoz, R. Montes, M. Baeza, Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing, TrAC, Trends Anal. Chem. 97 (2017) 201-215.
  • [36] E.B. Aydın, M.K. Sezgintürk, A disposable and ultrasensitive ITO based biosensor modified by 6-phosphonohexanoic acid for electrochemical sensing of IL-1β in human serum and saliva, Anal. Chim. Acta 1039 (2018) 41-50.
  • [37] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A Disposable Immunosensor Using ITO Based Electrode Modified by a Star-Shaped Polymer for Analysis of Tumor Suppressor Protein p53 In Human Serum, Biosens. Bioelectron. 107, 1-9 (2018).
  • [38] X.Y. Zhang, L.Y. Zhou, H.Q. Luo, N.B. Li, A sensitive and label-free impedimetric biosensor based on an adjunct probe, Anal. Chim. Acta 776 (2013) 11-16.
  • [39] M. Labib, S. Martić, P.O. Shipman, H.-B. Kraatz, Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface, Talanta 85(1) (2011) 770-778.
  • [40] A.S. Bandarenka, Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst 138(19) (2013) 5540-5554.
  • [41] M. Labib, P.O. Shipman, S. Martić, H.-B. Kraatz, Towards an early diagnosis of HIV infection: an electrochemical approach for detection ofHIV-1 reverse transcriptase enzyme, Analyst 136(4) (2011) 708-715.
  • [42] M. Behpour, S.M. Ghoreishi, E. Honarmand, M. Salavati-Niasari, Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl) methylidene] amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl) imino] methyl} phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid, Analyst 136(9) (2011) 1979-1986.
  • [43] S. Wang, Y. Zhang, J. Yu, X. Song, S. Ge, M. Yan, Application of indium tin oxide device in gold-coated magnetic iron solid support enhanced electrochemiluminescent immunosensor for determination of carcinoma embryonic antigen, Sensors and Actuators B: Sens. Actuators, B,
  • [44] L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors, Biosens. Bioelectron. 16(9-12) (2001) 675-687.
  • [45] Y. Huang, M.C. Bell, I.I. Suni, Impedance biosensor for peanut protein Ara h 1, Anal. Chem. 80(23) (2008) 9157-9161.
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Elif Burcu Aydın 0000-0002-1982-4128

Publication Date December 1, 2019
Acceptance Date May 28, 2019
Published in Issue Year 2019 Volume: 47 Issue: 4

Cite

APA Aydın, E. B. (2019). A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode. Hacettepe Journal of Biology and Chemistry, 47(4), 327-337. https://doi.org/10.15671/hjbc.515739
AMA Aydın EB. A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode. HJBC. December 2019;47(4):327-337. doi:10.15671/hjbc.515739
Chicago Aydın, Elif Burcu. “A Sensitive and Label-Free Electrochemical Impedance Immunosensor for CDH 22 Biomarker Detection Based on Organo-Functional Silane Modified ITO Electrode”. Hacettepe Journal of Biology and Chemistry 47, no. 4 (December 2019): 327-37. https://doi.org/10.15671/hjbc.515739.
EndNote Aydın EB (December 1, 2019) A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode. Hacettepe Journal of Biology and Chemistry 47 4 327–337.
IEEE E. B. Aydın, “A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode”, HJBC, vol. 47, no. 4, pp. 327–337, 2019, doi: 10.15671/hjbc.515739.
ISNAD Aydın, Elif Burcu. “A Sensitive and Label-Free Electrochemical Impedance Immunosensor for CDH 22 Biomarker Detection Based on Organo-Functional Silane Modified ITO Electrode”. Hacettepe Journal of Biology and Chemistry 47/4 (December 2019), 327-337. https://doi.org/10.15671/hjbc.515739.
JAMA Aydın EB. A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode. HJBC. 2019;47:327–337.
MLA Aydın, Elif Burcu. “A Sensitive and Label-Free Electrochemical Impedance Immunosensor for CDH 22 Biomarker Detection Based on Organo-Functional Silane Modified ITO Electrode”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 4, 2019, pp. 327-3, doi:10.15671/hjbc.515739.
Vancouver Aydın EB. A sensitive and label-free electrochemical impedance immunosensor for CDH 22 biomarker detection based on organo-functional silane modified ITO electrode. HJBC. 2019;47(4):327-3.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc