Review
PDF Zotero Mendeley EndNote BibTex Cite

Molecular Imprinting Technology for Biomimetic Assemblies

Year 2020, Volume 48, Issue 5, 575 - 601, 01.11.2020
https://doi.org/10.15671/hjbc.801427

Abstract

The term biomimetic can be simply defined as the examination of nature. The scientists inspired by the enormous diversity of nature to solve human problems or facilitate daily life by mimicking natural models, systems, and elements especially in the biomedical and therapeutic applications to make better drugs, artificial organs, sensing instruments, etc. Biological recognition elements like proteins, antibodies, enzymes, DNA, lectins, aptamers, cells, and viruses have been heavily used to ensure specificity in such applications in spite of their lack of stability and reusability. However, in the last two decades molecularly imprinted polymers, MIPs, have been synthesized as an alternative to mimic natural biological interactions for a broad spectrum of templates by means of coordinating functional monomers around template in the presence of cross-linker. This review will outline the broad contours of biomimetics prepared by molecular imprinting techniques and their practical applications in the separation techniques, tissue engineering applications, biomimetic surfaces, sensors, artificial membranes, and drug delivery systems.

References

  • References Akgönüllü, S., Yavuz, H., Denizli, A., 2017. Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine. Artif. Cell. Nanomed. B. 45, 800-807.
  • Alvarez-Lorenzo, C., Concheiro, A., (2013a). From drug dosage forms to intelligent drug delivery systems: a change of paradigm, in: Alvarez- Lorenzo, C., Concheiro, A. (eds.), Smart materials for drug delivery. Cambridge: RSC, pp. 1-32.
  • Alvarez-Lorenzo, C., Concheiro, A., (2013b). Molecularly imprinted polymers as components of drug delivery systems, in: Alvarez-Lorenzo, C., Concheiro, A. (eds.), Handbook of molecularly imprinted polymers. Shrewsbury, U.K., Smithers Rapra Publishing, pp. 309-49.
  • Alvarez-Lorenzo, C., Gonza´lez-Chomo´n. C., Concheiro, A. (2013c). Molecularly imprinted hydrogels for affinity-controlled and stimuli responsive drug delivery, in: Alvarez-Lorenzo, C., Concheiro, A., Schneider, H.J., Shahinpoor, M. (eds.), Smart materials for drug delivery. Cambridge: RSC, pp. 228-60.
  • Alvarez-Lorenzo, C., Yan˜ez-Gomez, F., Concheir, A. (2013d). Modular biomimetic drug delivery systems, in: Dumitriu, S., Popa, V. (eds.) Polymeric materials, medicinal and pharmaceutical applications. Boca Raton, FL: CRC Press, pp. 85–122.
  • Ang, Q.Y., Low, S.C., 2015. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine, Anal. Bioanal. Chem. 407, 6747–6758.
  • Armiento, A.R., Stoddart, M.J., Alini, M., Eglin, D., 2018. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 65, 1–20. Arshady, R., Mosbach, K., 1981. Synthesis of substrate‐selective polymers by host‐guest polymerization, Die Macromol. Chemie. 182, 687–692.
  • Arugula, M. A. and Simonian, A., 2014. Novel trends in affinity biosensors: current challenges and perspectives. Meas. Sci. Technol. 25 (3), 032001- 032022.
  • Aslıyüce, S., Bereli, N., Uzun, L., Onur, M.A., Say, R., Denizli, A., 2010. Ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia. Sep. Purif. Techn. 73, 243–249.
  • Aslıyüce, S., Uzun, L., Rad, A.Y., Ünal, S., Say, R., Denizli, A., 2012. Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. J. Chromatogr. B. 889, 95-102.
  • Bakhshpour, M., Yavuz, H., Denizli, A., 2018. Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes. Artif. Cells Nanomed. Biotechnol. doi:10.1080/21691401.2018.1439840
  • Battal, D., Akgönüllü, S., Yalçın, S.M., Yavuz, H., Denizli, A., 2018. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine, Biosens. Bioelectron. 111, 10–17.
  • Bayram, E., Yılmaz, E., Uzun, L., Say, R., Denizli, A., 2017. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples, Food Chem. 221, 829–837.
  • Bereli, N., Ertürk, G., Tümer, M.A., Say, R., Denizli, A., 2013. Oriented immobilized anti-hIgG via F c fragment-imprinted PHEMA cryogel for IgG purification, Biomed. Chromatogr. 27, 599–607. Brittain, W.J, Minko, S., 2007. A structural definition of polymer brushes. J. Poly. Sci. Part A Poly. Chem. 45, 3505–3512.
  • Caka, M., Ceren, T., Uygun, D.A., Uygun, M., Akgöl, S., Denizli, A., 2017. Controlled release of curcumin from poly(HEMA-MAPA) membrane. Artif. Cells Nanomed. Biotechnol., 45, 426-431.
  • Canfarotta, F., Lezina, L., Guerreiro, A., Czulak, J., Petukhov, A., Daks, A., Smolinska-Kempisty, K., Poma, A., Piletsky, S., Barlev, N.A., 2018. Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor. Nano Letters 18, 4641-4646.
  • Carbajo, J.B., Petre, A.L. Rosal, R., Herrera, S., Letón, P., García-Calvo, E., Fernández-Alb, A.R., Perdigón-Melóna, J.A., 2015. Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity, J. Hazard. Mater. 292, 34–43.
  • Cenci, L., Tatti, R., Tognato, R., Ambrosi, E., Piotto, C., Bossi, A.M., 2018. Synthesis and characterization of peptide-imprinted nanogels of controllable size and affinity, Eur. Polym. J. 109, 453–459.
  • Cennamo, N., D’Agostino, G., Pesavento, M., Zeni, L., 2014. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine, Sensor. Actuator. B-Chem. 191, 529–536.
  • Çetin, K., Alkan, H., Bereli, N., Denizli, A., 2017. Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A Pure Appl. Chem. 54, 502–508.
  • Çetin, K., Denizli, A., 2015. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloid. Surface. B. 126, 401-406.
  • Chen, B., Piletsky, S., Turner, A.P.F., 2002. Molecular Recognition: Design of “Keys,” Comb. Chem. High Throughput Screen. 5, 409–427.
  • Cieplak, M., Kutner, W., 2016. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?, Trends Biotechnol. 34, 922–941.
  • Criscenti, G., Maria, C.D., Longoni, A., Blitterswijk, C.A., Fernandes, H.A.M., Vozzi G., Moroni, L., 2018. Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication, 10, 045005, 1-9.
  • Cunliffe, D., Kirby, A., Alexander, C., 2005. Molecularly imprinted drug delivery systems. Adv. Drug Deliv. Rev., 57, 1836-1853.
  • Dai, J., Zhou, Z., Zou, Y., Wei, Z., Dai, X., Li, C., Yan, Y., 2014. Surface imprinted core-shell nanorod with ultrathin water-compatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium. J. Appl. Polym. Sci., 131 (19), 1-11.
  • Dai, J., Zou, y. Zhou, Z., Dai, X., Pan, J., Yu, P., Zou, T., Yan, Y., Li, C., 2014. Narrowly dispersed imprinted microspheres with hydrophilic polymer brushes for the selective removal of sulfamethazine. RSC Adv., 4, 1965-1973.
  • Dan, R., Wang, Y., Du, L., Du, S., Huang, M., Yang, S., Zhang, M., 2013. The synthesis of molecular imprinted chitosan-gels copolymerized with multiform functional monomers at three different temperatures and the recognition for the template ovalbumin. Analyst. 138, 3433-3443.
  • DePorter, S.M., Lui, I., McNaughton, B.R., 2012. Programmed cell adhesion and growth on cell-imprinted polyacrylamide hydrogels. Soft Matter. 8, 10403–10408.
  • Dickey, F.H., 1955. Specific Adsorption, J. Phys. Chem. 59, 695–707.
  • Ertürk, G., Bereli, N., Tümer, M.A., Say, R., Denizli, A., 2013. Molecularly imprinted cryogels for human interferon-alpha purification from human gingival fibroblast culture, J. Mol. Recognit. 26, 633–642.
  • Fan, J. P., Li, L., Tian, Z. Y., Xie, C. F., Song, F. T., Zhang, X. H., Zhu, J. H., 2014. A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media. J. Membrane Sci. 467, 13-22.
  • Feng, F., Zheng, J., Qin, P., Hanb, T., Zhaoa, D., 2017. A novel quartz crystal microbalance sensor array based on molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites, Talanta. 167, 94–102.
  • Gao, R., Zhao, S., Hao, Y., Zhang, L., Cui, X., Liu, D., Tang, Y., 2015. Facile and green synthesis of polysaccharide-based magnetic molecularly imprinted nanoparticles for protein recognition. RSC Adv. 5, 88436-88444.
  • Gemma, V., Judit, T.-P., Fernando, A., 2012. Polymers and drug delivery dystems. Curr. Drug Deliv., 9, 367-394.
  • Gholivand, M.B., Torkashvand, M., 2011. A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode, Talanta. 84, 905–912.
  • Guo, T., Xia, Y., Hao, G., Zhang, B., Fu, G., Yuan, Z., He, B., Kennedy, J.F., 2005. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydr Polym. 62, 214-221.
  • Gutierrez-Climente, R., Gomez-Caballero, A., Guerreiro, A., Garcia-Mutio, D., Unceta, N., Goicolea, M.A., Barrio, R.J., 2017. Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A. 1508, 53–64.
  • Han, Q. Shen, X., Zhu, W., Zhu, C., Zhou, X., Jiang, H., 2016. Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol, Biosens. Bioelectron. 79, 180–186.
  • Haupt, K. and Mosbach, K., 2000. Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100, 2495-2504.
  • Hawkins, D.M., Stevenson, D., Reddy, S.M., 2005. Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs). Anal Chim Acta. 542, 61-65.
  • He, Z., Zang, S., Liu, Y., He, Y., Lei, H., 2015. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nano flower as signal enhancer, Biosens. Bioelectron. 73, 85–92.
  • Hilt, J.Z., Byrne, M.E., 2004. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev., 56, 1599-1620.
  • Hussain, M., Kotova, K., and Lieberzeit, P.A., 2016. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM, Sensors.16, 1011, 1-9.
  • Kan, X., Xing, Z., Zhu, A., Zhao, Z., Xu, G., Li, C., Zhou, H., 2012. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition, Sensor. Actuator. B-Chem. 168, 395– 401.
  • Kisukuri, C.M., and Andrade, L.H., 2015. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem. 40 (13), 10086-10107.
  • Koç, İ., Baydemir, G., Bayram, E., Yavuz, H., Denizli, A., 2011. Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems. J. Hazard. Mater. 192, 1819-1826.
  • Koyun, S., Akgönüllü, S., Yavuz, H., Erdem, A., Denizli, A., 2019. Surface plasmon resonance aptasensor for detection of human activated protein C, Talanta. 194, 528–533.
  • Krejcova, L., Michalek, P., Rodrigo, M. M., Heger, Z., Krizkova, S., Vaculovicova, M., Hynek, D., Adam, V., Kizek, R., 2015. Nanoscale virus biosensors: state of the art, Nanobiosens. Dis. Diagn., 4, 47-66.
  • Kryscio, D.R., Fleming, M.Q., Peppas, N.A., 2012. Protein conformational studies for macromolecularly imprinted polymers. Macromol Biosci. 12, 1137-1144.
  • Li, T., Fan, L., Wang, Y., Huang, X., Xu, J., Lu, J., Xu, W., 2017. Molecularly imprinted membrane electrospray ionization for direct sample analyses. Anal. Chem. 89, 1453-1458.
  • Liu, X.-L., Yao, H.-F., Chai, M.-H., He, W., Huang, Y.-P., Liu, Z.-S., 2018. Green synthesis of carbon nanotubes-reinforced molecularly imprinted polymer composites for drug delivery of fenbufen. AAPS PharmSciTech., doi: 10.1208/512249-018-1192z
  • Ma, P., Zhou, Z., Dai, J., Qin, L., Ye, X., Chen, X., He, J., Xie, A., Yan Y., Li, X., 2016. A biomimetic Setaria viridis-inspired imprinted nano adsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv. 6, 9619-9630.
  • Mariana, I.N., Marissa, E.W., Manuela, E.G., Rui, R.L., Pedro, L.G., Nicholas, A.P., 2016. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications, Tissue Eng. Part B. 23, 27-43.
  • Matsumoto, K., Tiu, B.D.B., Kawamura, A., Advincula, R.C., Miyata, T., 2016. QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix, Polymer Journal 48, 525–532.
  • Meshram, B.D., Agrawal, A.K., Adil, S., Ranvir, S., Sande, K.K., 2018. Biosensor and its application in food and dairy ındustry: a review, Int. J. Curr. Microbiol. App. Sci. 7(2), 3305-3324.
  • Murphy, W.L., Kohn, D.H., Mooney, D.J., 2000. Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res., 8, 50-58.
  • Nayak, M., Kotian, A., Marathe, S., Chakravortty, D., 2009. Detection of microorganisms using biosensors- A smarter way towards detection techniques. Biosens Bioelectron., 25, 661-667.
  • Niu, H., Yang, Y., Zhang, H., 2015. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nano particles for direct drug quantification in real biological samples. Biosens. Bioelectron., 74, 440–446.
  • Norell, M.C., Andersson, H.S., Nicholls, I.A., 1998. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J. Mol. Recognit., 11, 98-102.
  • Oliveira, D., Dias, R.C.S., Costa, M.R.P.F.N., 2016. Modeling RAFT Gelation and Grafting of Polymer Brushes for the Production of Molecularly Imprinted Functional Particles. Macromol. Symp., 370, 52–65.
  • Oliveira, D., Gomes, C.P., Dias, R.C.S., Costa, M.R.P.F.N., 2016. Molecular imprinting of 5-fluorouracil in particles with surface RAFT grafted functional brushes. React. Funct. Poly., 107, 35–45.
  • Omar, S.A., Thomas, S., Bedwell, Esen, C., Garcia-Cruz, A., Piletsky Sergey, A., 2018. Molecularly ımprinted polymers in electrochemical and optical sensors, Trends in Biotechnology. doi: https://doi.org/10.1016/j.tibtech.2018.08.009
  • Öncel, P., Çetin, K., Topçu, A.A., Yavuz, H., Denizli, A., 2017. Molecularly imprinted cryogel membranes for mitomycin C delivery. J. Biomat. Sci-polym. E., 28, 519-531.
  • Pan, G., Zhang, Y., Guo, X., Li, C., Zhang, H., 2010. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron. 26, 976–982.
  • Patel, A.K., Sharma, P.S., Prasad, B.B., 2009. Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol-gel thin film graphite electrode. Mater. Sci. Engin. C, 29, 1545–1553.
  • Peng, H., Luo, M., Xiong, H., Yu, N., Ning, F., Fan, J., Zeng, Z., Li, J., Chen, L., 2016. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol, J. Chromatogr. A. 1442, 1–11.
  • Peng, S.J.Y., Ning, B., Bai, J., Liu, Y., Zhang, N., Gao, Z., 2015. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine, Sensor Actuator B-Chem. 22, 15–21.
  • Prasad, B., Kumar, A., 2015. Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2-mercaptobenzamide on a silver electrode for ultratrace sensing of uracil and 5-fluorouracil, J. Mater. Chem. B, 3, 5864-5876.
  • Prasad, B.B., Jauhari, D., Tiwari, M.P., 2014. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate, Biosens. Bioelectron. 59, 81–88.
  • Qiu, X., Xu, X. Y., Liang, Y., Hua, Y., Guo, H., 2016. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples. J. Chromatogr. A. 1429, 79-85.
  • Qu, P., Lei, J., Zhang, L., Ouyang, R., Ju, H., 2010. Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A. 1217, 6115–6121.
  • Rosellini, E., Barbani, N., Giusti, P., Ciardelli, G., Cristallini, C., 2010. Molecularly imprinted nanoparticles with recognition properties towards a laminin H–Tyr–Ile–Gly–Ser–Arg–OH sequence for tissue engineering applications, Biomed. Mater. 5, 065007, 1-11.
  • Saylan, Y., Akgönüllü, S., Çimen, D., Derazshamshir, A., Bereli, N., Yılmaz, F., Denizli, A., 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sensor. Actuator. B-Chem. 241, 446-454.
  • Sellergren, B., Allender, C.J., 2005. Molecularly imprinted polymers: A bridge to advanced drug delivery. Adv. Drug Deliv. Rev, 57, 1733-1741.
  • Shabi, A.Z., 2016. Molecular imprinted polymers as drug delivery vehicles. Drug Delivery, 23, 2262-2271.
  • Shaikh, H., Andaç, M., Memon, N., Bhanger, M. I., Nizamani, S. M., Denizli, A., 2015. Synthesis and characterization of molecularly imprinted polymer embedded composite cryogel discs: application for the selective extraction of cypermethrins from aqueous samples prior to GC-MS analysis. RSC Adv. 5, 26604-26615.
  • Shen, X., Svensson Bonde, J., Kamra, T., Bülow, L., Leo, J.C., Linke, D., Ye, L., 2014. Bacterial imprinting at pickering emulsion interfaces. Angew. Chem., Int. Ed., 53, 10687−10690.
  • Shi, W., Zhang, S.Q., Li, K.B., Jia, W.P., Han, D.M., 2018. Integration of mixed-mode chromatography and molecular imprinting technology for double recognition and selective separation of proteins, Sep. Purif. Technol. 202, 165–173.
  • Shrivastav, A.M., Mishra, S.K., Gupta B.D., 2015. Fiber optic SPR sensor for the detection of melamine using molecular imprinting, Sensor. Actuator. B-Chem. 212, 404–410.
  • Shrivastav, A.M., Usha, S.P., Gupta, B.D., 2016. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting, Biosens. Bioelectron. 79, 150–157.
  • Singh A., Poshtiban S., Evoy S., 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors. 13(2), 1763-1786.
  • Sood, N., Bhardwaj, A., Mehta, S., Mehta, A., 2016. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv., 23, 758-80.
  • Suedee, R., 2013. The use of molecularly imprinted polymers for dermal drug delivery. Pharm. Anal. Acta. 4, 264. doi:10.4172/2153-2435.1000264
  • Suedee, R., Bodhibukkana, C., Tangthong, N., Amnuaikit, C., Kaewnopparat, S., Srichana, T., 2008. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Control. Release, 129, 170-178.
  • Székely, G., Valtcheva, I. B., Kim, J. F., Livingston, A. G., 2015. Molecularly imprinted organic solvent nanofiltration membranes–Revealing molecular recognition and solute rejection behaviour. React. Funct. Polym. 86, 215-224.
  • Tang, Y., Gao, J., Liu, X., Gao, X., Ma, T., Lu, X., Li, J., 2017. Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody, Food Chem. 228, 62–69.
  • Türkmen, D., Bereli, N., Çorman, M.E., Shaikh, H., Akgöl, S., Denizli, A., 2014. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artif. Cells Nanomed. Biotechnol., 42, 316-322.
  • Velusamy V., Arshak K., Korostynska O., Oliwa K., Adley C., 2010. An overview of foodborne pathogen detection: In the prespective of biosensors. Biotechnol. Adv. 28 (2), 232-254.
  • Vlatakis, G., Andersson, L.I., Müller, R., Mosbach, K., 1993. Drug assay using antibody mimics made by molecular imprinting. Nature, 361, 645-647.
  • Vozzi, G., Morelli, I., Vozzi, F., Andreoni, C., Salsedo, E., Morachioli, A., Giusti, P., Ciardelli, G., 2010. SOFT-MI: A Novel Microfabrication Technique Integrating Soft-Lithography and Molecular Imprinting for Tissue Engineering Applications. Biotechnol. Bioengineer. 106, 5, 804-817.
  • Wang, L.Z., Zhang, J., 2014. Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode, Sensor. Actuator. B-Chem. 192, 642– 647.
  • Wang, N.X. and von Recum, H.A., 2011. Affinity-based drug delivery. Macromol. Biosci. 11, 321-332.
  • White, C.J., McBride, M.K., Pate, K.M., Tieppo, A., Byrne, M.E., 2011. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials, 32, 5698−5705.
  • Wu, Y., Liu, X., Cui, J., Meng, M., Dai, J., Li, C., Yan, Y., 2017. Bioinspired synthesis of high-performance nanocomposite imprinted membrane by a polydopamine-assisted metal-organic method. J. Hazard. Mater. 323, 663-673.
  • Wu, Y., Lu, J., Lin, X., Gao, J., Chen, L., Cui, J., Lv, P., Liu, X., Meng, M., Yan, Y., 2018. Bioinspired Synthesis of Janus Nanocomposite-Incorporated Molecularly Imprinted Membranes for Selective Adsorption and Separation Applications, ACS Sustain. Chem. Eng. 6, 9104–9112.
  • Wulff, G., Grobe-Einsler, R.,Vesper, W., Sarhan, A., 1977. Enzyme-analogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers, Die Makromol. Chemie. 178, 2817–2825.
  • Wulff, G., Liu, J., 2012. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers: The Role of Transition State Stabilization, Acc. Chem. Res. 45, 239–247.
  • Xia, Y.Q., Guo, T.Y., Song, M.D., Zhang, B.H., Zhang, B.L., 2005. Hemoglobin recognition by imprinting in semiinterpenetrating polymer network hydrogel based on poly-acrylamide and chitosan. Biomacromolecules. 6, 2601-2606.
  • Xua, S., Lua, H., Chen, L., 2014. Double water compatible molecularly imprinted polymers appliedas solid-phase extraction sorbent for selective preconcentration anddetermination of triazines in complicated water samples. J. Chromatogr. A, 1350, 23–29.
  • Yanase, Y., Hiragun, T., Yanase, T., Kawaguchi, T., Ishii, K., Hide, M., 2013. Application of spr imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy, Allergol. Int. 62, 163-169.
  • Yang, Y., Niu, H., Zhang, H., 2016. Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly ımprinted polymer microparticles. Appl. Mater. Interfaces, 8, 15741−15749.
  • Yang, Y., Wang, Z., Niu, Z., Zhang, H., 2016. One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples. Biosens. Bioelectron., 86, 580–587.
  • Yang, Z., Zhang, C., 2009. Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution, Sensor. Actuator. B-Chem. 142, 210–215.
  • Yasmin J., Ahmed, M.R., Cho, B.-K., 2016. Biosensors and their applications in food safety: a review, J. Biosystem. Eng., 41(3), 240-254.
  • Yavuz, H., Çetin, K., Akgönüllü, S., Battal, D., Denizli, A. 2018. Therapeutic protein and drug imprinted nanostructures as controlled delivery tools, in: Alexandru Mihai Grumezescu (Ed.), Des. Dev. New Nanocarriers, William Andrew Publishing, pp. 439–473.
  • Zhang, Y., Deng, C., Liu, S., Wu, J., Chen, Z., Li, C., Lu, W., 2015. Active targeting of tumors through conformational epitope imprinting. Angew. Chem., Int. Ed., 54, 5157−5160.
  • Zhao, L., Zhao, F., Zeng, B. 2014. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosens. Bioelectron. 60, 71–76.
  • Zhao, Z., Jiang H., 2010. Enzyme-based electrochemical biosensors. (Eds.). Pier Andrea Serra, Biosensors, Intech, Croatia, pp. 1-22.

Year 2020, Volume 48, Issue 5, 575 - 601, 01.11.2020
https://doi.org/10.15671/hjbc.801427

Abstract

References

  • References Akgönüllü, S., Yavuz, H., Denizli, A., 2017. Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine. Artif. Cell. Nanomed. B. 45, 800-807.
  • Alvarez-Lorenzo, C., Concheiro, A., (2013a). From drug dosage forms to intelligent drug delivery systems: a change of paradigm, in: Alvarez- Lorenzo, C., Concheiro, A. (eds.), Smart materials for drug delivery. Cambridge: RSC, pp. 1-32.
  • Alvarez-Lorenzo, C., Concheiro, A., (2013b). Molecularly imprinted polymers as components of drug delivery systems, in: Alvarez-Lorenzo, C., Concheiro, A. (eds.), Handbook of molecularly imprinted polymers. Shrewsbury, U.K., Smithers Rapra Publishing, pp. 309-49.
  • Alvarez-Lorenzo, C., Gonza´lez-Chomo´n. C., Concheiro, A. (2013c). Molecularly imprinted hydrogels for affinity-controlled and stimuli responsive drug delivery, in: Alvarez-Lorenzo, C., Concheiro, A., Schneider, H.J., Shahinpoor, M. (eds.), Smart materials for drug delivery. Cambridge: RSC, pp. 228-60.
  • Alvarez-Lorenzo, C., Yan˜ez-Gomez, F., Concheir, A. (2013d). Modular biomimetic drug delivery systems, in: Dumitriu, S., Popa, V. (eds.) Polymeric materials, medicinal and pharmaceutical applications. Boca Raton, FL: CRC Press, pp. 85–122.
  • Ang, Q.Y., Low, S.C., 2015. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine, Anal. Bioanal. Chem. 407, 6747–6758.
  • Armiento, A.R., Stoddart, M.J., Alini, M., Eglin, D., 2018. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 65, 1–20. Arshady, R., Mosbach, K., 1981. Synthesis of substrate‐selective polymers by host‐guest polymerization, Die Macromol. Chemie. 182, 687–692.
  • Arugula, M. A. and Simonian, A., 2014. Novel trends in affinity biosensors: current challenges and perspectives. Meas. Sci. Technol. 25 (3), 032001- 032022.
  • Aslıyüce, S., Bereli, N., Uzun, L., Onur, M.A., Say, R., Denizli, A., 2010. Ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia. Sep. Purif. Techn. 73, 243–249.
  • Aslıyüce, S., Uzun, L., Rad, A.Y., Ünal, S., Say, R., Denizli, A., 2012. Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. J. Chromatogr. B. 889, 95-102.
  • Bakhshpour, M., Yavuz, H., Denizli, A., 2018. Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes. Artif. Cells Nanomed. Biotechnol. doi:10.1080/21691401.2018.1439840
  • Battal, D., Akgönüllü, S., Yalçın, S.M., Yavuz, H., Denizli, A., 2018. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine, Biosens. Bioelectron. 111, 10–17.
  • Bayram, E., Yılmaz, E., Uzun, L., Say, R., Denizli, A., 2017. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples, Food Chem. 221, 829–837.
  • Bereli, N., Ertürk, G., Tümer, M.A., Say, R., Denizli, A., 2013. Oriented immobilized anti-hIgG via F c fragment-imprinted PHEMA cryogel for IgG purification, Biomed. Chromatogr. 27, 599–607. Brittain, W.J, Minko, S., 2007. A structural definition of polymer brushes. J. Poly. Sci. Part A Poly. Chem. 45, 3505–3512.
  • Caka, M., Ceren, T., Uygun, D.A., Uygun, M., Akgöl, S., Denizli, A., 2017. Controlled release of curcumin from poly(HEMA-MAPA) membrane. Artif. Cells Nanomed. Biotechnol., 45, 426-431.
  • Canfarotta, F., Lezina, L., Guerreiro, A., Czulak, J., Petukhov, A., Daks, A., Smolinska-Kempisty, K., Poma, A., Piletsky, S., Barlev, N.A., 2018. Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor. Nano Letters 18, 4641-4646.
  • Carbajo, J.B., Petre, A.L. Rosal, R., Herrera, S., Letón, P., García-Calvo, E., Fernández-Alb, A.R., Perdigón-Melóna, J.A., 2015. Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity, J. Hazard. Mater. 292, 34–43.
  • Cenci, L., Tatti, R., Tognato, R., Ambrosi, E., Piotto, C., Bossi, A.M., 2018. Synthesis and characterization of peptide-imprinted nanogels of controllable size and affinity, Eur. Polym. J. 109, 453–459.
  • Cennamo, N., D’Agostino, G., Pesavento, M., Zeni, L., 2014. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine, Sensor. Actuator. B-Chem. 191, 529–536.
  • Çetin, K., Alkan, H., Bereli, N., Denizli, A., 2017. Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A Pure Appl. Chem. 54, 502–508.
  • Çetin, K., Denizli, A., 2015. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs. Colloid. Surface. B. 126, 401-406.
  • Chen, B., Piletsky, S., Turner, A.P.F., 2002. Molecular Recognition: Design of “Keys,” Comb. Chem. High Throughput Screen. 5, 409–427.
  • Cieplak, M., Kutner, W., 2016. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?, Trends Biotechnol. 34, 922–941.
  • Criscenti, G., Maria, C.D., Longoni, A., Blitterswijk, C.A., Fernandes, H.A.M., Vozzi G., Moroni, L., 2018. Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication, 10, 045005, 1-9.
  • Cunliffe, D., Kirby, A., Alexander, C., 2005. Molecularly imprinted drug delivery systems. Adv. Drug Deliv. Rev., 57, 1836-1853.
  • Dai, J., Zhou, Z., Zou, Y., Wei, Z., Dai, X., Li, C., Yan, Y., 2014. Surface imprinted core-shell nanorod with ultrathin water-compatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium. J. Appl. Polym. Sci., 131 (19), 1-11.
  • Dai, J., Zou, y. Zhou, Z., Dai, X., Pan, J., Yu, P., Zou, T., Yan, Y., Li, C., 2014. Narrowly dispersed imprinted microspheres with hydrophilic polymer brushes for the selective removal of sulfamethazine. RSC Adv., 4, 1965-1973.
  • Dan, R., Wang, Y., Du, L., Du, S., Huang, M., Yang, S., Zhang, M., 2013. The synthesis of molecular imprinted chitosan-gels copolymerized with multiform functional monomers at three different temperatures and the recognition for the template ovalbumin. Analyst. 138, 3433-3443.
  • DePorter, S.M., Lui, I., McNaughton, B.R., 2012. Programmed cell adhesion and growth on cell-imprinted polyacrylamide hydrogels. Soft Matter. 8, 10403–10408.
  • Dickey, F.H., 1955. Specific Adsorption, J. Phys. Chem. 59, 695–707.
  • Ertürk, G., Bereli, N., Tümer, M.A., Say, R., Denizli, A., 2013. Molecularly imprinted cryogels for human interferon-alpha purification from human gingival fibroblast culture, J. Mol. Recognit. 26, 633–642.
  • Fan, J. P., Li, L., Tian, Z. Y., Xie, C. F., Song, F. T., Zhang, X. H., Zhu, J. H., 2014. A novel free-standing flexible molecularly imprinted membrane for selective separation of synephrine in methanol–water media. J. Membrane Sci. 467, 13-22.
  • Feng, F., Zheng, J., Qin, P., Hanb, T., Zhaoa, D., 2017. A novel quartz crystal microbalance sensor array based on molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites, Talanta. 167, 94–102.
  • Gao, R., Zhao, S., Hao, Y., Zhang, L., Cui, X., Liu, D., Tang, Y., 2015. Facile and green synthesis of polysaccharide-based magnetic molecularly imprinted nanoparticles for protein recognition. RSC Adv. 5, 88436-88444.
  • Gemma, V., Judit, T.-P., Fernando, A., 2012. Polymers and drug delivery dystems. Curr. Drug Deliv., 9, 367-394.
  • Gholivand, M.B., Torkashvand, M., 2011. A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode, Talanta. 84, 905–912.
  • Guo, T., Xia, Y., Hao, G., Zhang, B., Fu, G., Yuan, Z., He, B., Kennedy, J.F., 2005. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydr Polym. 62, 214-221.
  • Gutierrez-Climente, R., Gomez-Caballero, A., Guerreiro, A., Garcia-Mutio, D., Unceta, N., Goicolea, M.A., Barrio, R.J., 2017. Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography, J. Chromatogr. A. 1508, 53–64.
  • Han, Q. Shen, X., Zhu, W., Zhu, C., Zhou, X., Jiang, H., 2016. Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol, Biosens. Bioelectron. 79, 180–186.
  • Haupt, K. and Mosbach, K., 2000. Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100, 2495-2504.
  • Hawkins, D.M., Stevenson, D., Reddy, S.M., 2005. Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs). Anal Chim Acta. 542, 61-65.
  • He, Z., Zang, S., Liu, Y., He, Y., Lei, H., 2015. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nano flower as signal enhancer, Biosens. Bioelectron. 73, 85–92.
  • Hilt, J.Z., Byrne, M.E., 2004. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev., 56, 1599-1620.
  • Hussain, M., Kotova, K., and Lieberzeit, P.A., 2016. Molecularly imprinted polymer nanoparticles for formaldehyde sensing with QCM, Sensors.16, 1011, 1-9.
  • Kan, X., Xing, Z., Zhu, A., Zhao, Z., Xu, G., Li, C., Zhou, H., 2012. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition, Sensor. Actuator. B-Chem. 168, 395– 401.
  • Kisukuri, C.M., and Andrade, L.H., 2015. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem. 40 (13), 10086-10107.
  • Koç, İ., Baydemir, G., Bayram, E., Yavuz, H., Denizli, A., 2011. Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems. J. Hazard. Mater. 192, 1819-1826.
  • Koyun, S., Akgönüllü, S., Yavuz, H., Erdem, A., Denizli, A., 2019. Surface plasmon resonance aptasensor for detection of human activated protein C, Talanta. 194, 528–533.
  • Krejcova, L., Michalek, P., Rodrigo, M. M., Heger, Z., Krizkova, S., Vaculovicova, M., Hynek, D., Adam, V., Kizek, R., 2015. Nanoscale virus biosensors: state of the art, Nanobiosens. Dis. Diagn., 4, 47-66.
  • Kryscio, D.R., Fleming, M.Q., Peppas, N.A., 2012. Protein conformational studies for macromolecularly imprinted polymers. Macromol Biosci. 12, 1137-1144.
  • Li, T., Fan, L., Wang, Y., Huang, X., Xu, J., Lu, J., Xu, W., 2017. Molecularly imprinted membrane electrospray ionization for direct sample analyses. Anal. Chem. 89, 1453-1458.
  • Liu, X.-L., Yao, H.-F., Chai, M.-H., He, W., Huang, Y.-P., Liu, Z.-S., 2018. Green synthesis of carbon nanotubes-reinforced molecularly imprinted polymer composites for drug delivery of fenbufen. AAPS PharmSciTech., doi: 10.1208/512249-018-1192z
  • Ma, P., Zhou, Z., Dai, J., Qin, L., Ye, X., Chen, X., He, J., Xie, A., Yan Y., Li, X., 2016. A biomimetic Setaria viridis-inspired imprinted nano adsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv. 6, 9619-9630.
  • Mariana, I.N., Marissa, E.W., Manuela, E.G., Rui, R.L., Pedro, L.G., Nicholas, A.P., 2016. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications, Tissue Eng. Part B. 23, 27-43.
  • Matsumoto, K., Tiu, B.D.B., Kawamura, A., Advincula, R.C., Miyata, T., 2016. QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix, Polymer Journal 48, 525–532.
  • Meshram, B.D., Agrawal, A.K., Adil, S., Ranvir, S., Sande, K.K., 2018. Biosensor and its application in food and dairy ındustry: a review, Int. J. Curr. Microbiol. App. Sci. 7(2), 3305-3324.
  • Murphy, W.L., Kohn, D.H., Mooney, D.J., 2000. Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res., 8, 50-58.
  • Nayak, M., Kotian, A., Marathe, S., Chakravortty, D., 2009. Detection of microorganisms using biosensors- A smarter way towards detection techniques. Biosens Bioelectron., 25, 661-667.
  • Niu, H., Yang, Y., Zhang, H., 2015. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nano particles for direct drug quantification in real biological samples. Biosens. Bioelectron., 74, 440–446.
  • Norell, M.C., Andersson, H.S., Nicholls, I.A., 1998. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. J. Mol. Recognit., 11, 98-102.
  • Oliveira, D., Dias, R.C.S., Costa, M.R.P.F.N., 2016. Modeling RAFT Gelation and Grafting of Polymer Brushes for the Production of Molecularly Imprinted Functional Particles. Macromol. Symp., 370, 52–65.
  • Oliveira, D., Gomes, C.P., Dias, R.C.S., Costa, M.R.P.F.N., 2016. Molecular imprinting of 5-fluorouracil in particles with surface RAFT grafted functional brushes. React. Funct. Poly., 107, 35–45.
  • Omar, S.A., Thomas, S., Bedwell, Esen, C., Garcia-Cruz, A., Piletsky Sergey, A., 2018. Molecularly ımprinted polymers in electrochemical and optical sensors, Trends in Biotechnology. doi: https://doi.org/10.1016/j.tibtech.2018.08.009
  • Öncel, P., Çetin, K., Topçu, A.A., Yavuz, H., Denizli, A., 2017. Molecularly imprinted cryogel membranes for mitomycin C delivery. J. Biomat. Sci-polym. E., 28, 519-531.
  • Pan, G., Zhang, Y., Guo, X., Li, C., Zhang, H., 2010. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens. Bioelectron. 26, 976–982.
  • Patel, A.K., Sharma, P.S., Prasad, B.B., 2009. Electrochemical sensor for uric acid based on a molecularly imprinted polymer brush grafted to tetraethoxysilane derived sol-gel thin film graphite electrode. Mater. Sci. Engin. C, 29, 1545–1553.
  • Peng, H., Luo, M., Xiong, H., Yu, N., Ning, F., Fan, J., Zeng, Z., Li, J., Chen, L., 2016. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol, J. Chromatogr. A. 1442, 1–11.
  • Peng, S.J.Y., Ning, B., Bai, J., Liu, Y., Zhang, N., Gao, Z., 2015. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine, Sensor Actuator B-Chem. 22, 15–21.
  • Prasad, B., Kumar, A., 2015. Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2-mercaptobenzamide on a silver electrode for ultratrace sensing of uracil and 5-fluorouracil, J. Mater. Chem. B, 3, 5864-5876.
  • Prasad, B.B., Jauhari, D., Tiwari, M.P., 2014. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate, Biosens. Bioelectron. 59, 81–88.
  • Qiu, X., Xu, X. Y., Liang, Y., Hua, Y., Guo, H., 2016. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples. J. Chromatogr. A. 1429, 79-85.
  • Qu, P., Lei, J., Zhang, L., Ouyang, R., Ju, H., 2010. Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A. 1217, 6115–6121.
  • Rosellini, E., Barbani, N., Giusti, P., Ciardelli, G., Cristallini, C., 2010. Molecularly imprinted nanoparticles with recognition properties towards a laminin H–Tyr–Ile–Gly–Ser–Arg–OH sequence for tissue engineering applications, Biomed. Mater. 5, 065007, 1-11.
  • Saylan, Y., Akgönüllü, S., Çimen, D., Derazshamshir, A., Bereli, N., Yılmaz, F., Denizli, A., 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sensor. Actuator. B-Chem. 241, 446-454.
  • Sellergren, B., Allender, C.J., 2005. Molecularly imprinted polymers: A bridge to advanced drug delivery. Adv. Drug Deliv. Rev, 57, 1733-1741.
  • Shabi, A.Z., 2016. Molecular imprinted polymers as drug delivery vehicles. Drug Delivery, 23, 2262-2271.
  • Shaikh, H., Andaç, M., Memon, N., Bhanger, M. I., Nizamani, S. M., Denizli, A., 2015. Synthesis and characterization of molecularly imprinted polymer embedded composite cryogel discs: application for the selective extraction of cypermethrins from aqueous samples prior to GC-MS analysis. RSC Adv. 5, 26604-26615.
  • Shen, X., Svensson Bonde, J., Kamra, T., Bülow, L., Leo, J.C., Linke, D., Ye, L., 2014. Bacterial imprinting at pickering emulsion interfaces. Angew. Chem., Int. Ed., 53, 10687−10690.
  • Shi, W., Zhang, S.Q., Li, K.B., Jia, W.P., Han, D.M., 2018. Integration of mixed-mode chromatography and molecular imprinting technology for double recognition and selective separation of proteins, Sep. Purif. Technol. 202, 165–173.
  • Shrivastav, A.M., Mishra, S.K., Gupta B.D., 2015. Fiber optic SPR sensor for the detection of melamine using molecular imprinting, Sensor. Actuator. B-Chem. 212, 404–410.
  • Shrivastav, A.M., Usha, S.P., Gupta, B.D., 2016. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting, Biosens. Bioelectron. 79, 150–157.
  • Singh A., Poshtiban S., Evoy S., 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors. 13(2), 1763-1786.
  • Sood, N., Bhardwaj, A., Mehta, S., Mehta, A., 2016. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv., 23, 758-80.
  • Suedee, R., 2013. The use of molecularly imprinted polymers for dermal drug delivery. Pharm. Anal. Acta. 4, 264. doi:10.4172/2153-2435.1000264
  • Suedee, R., Bodhibukkana, C., Tangthong, N., Amnuaikit, C., Kaewnopparat, S., Srichana, T., 2008. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Control. Release, 129, 170-178.
  • Székely, G., Valtcheva, I. B., Kim, J. F., Livingston, A. G., 2015. Molecularly imprinted organic solvent nanofiltration membranes–Revealing molecular recognition and solute rejection behaviour. React. Funct. Polym. 86, 215-224.
  • Tang, Y., Gao, J., Liu, X., Gao, X., Ma, T., Lu, X., Li, J., 2017. Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody, Food Chem. 228, 62–69.
  • Türkmen, D., Bereli, N., Çorman, M.E., Shaikh, H., Akgöl, S., Denizli, A., 2014. Molecular imprinted magnetic nanoparticles for controlled delivery of mitomycin C. Artif. Cells Nanomed. Biotechnol., 42, 316-322.
  • Velusamy V., Arshak K., Korostynska O., Oliwa K., Adley C., 2010. An overview of foodborne pathogen detection: In the prespective of biosensors. Biotechnol. Adv. 28 (2), 232-254.
  • Vlatakis, G., Andersson, L.I., Müller, R., Mosbach, K., 1993. Drug assay using antibody mimics made by molecular imprinting. Nature, 361, 645-647.
  • Vozzi, G., Morelli, I., Vozzi, F., Andreoni, C., Salsedo, E., Morachioli, A., Giusti, P., Ciardelli, G., 2010. SOFT-MI: A Novel Microfabrication Technique Integrating Soft-Lithography and Molecular Imprinting for Tissue Engineering Applications. Biotechnol. Bioengineer. 106, 5, 804-817.
  • Wang, L.Z., Zhang, J., 2014. Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode, Sensor. Actuator. B-Chem. 192, 642– 647.
  • Wang, N.X. and von Recum, H.A., 2011. Affinity-based drug delivery. Macromol. Biosci. 11, 321-332.
  • White, C.J., McBride, M.K., Pate, K.M., Tieppo, A., Byrne, M.E., 2011. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials, 32, 5698−5705.
  • Wu, Y., Liu, X., Cui, J., Meng, M., Dai, J., Li, C., Yan, Y., 2017. Bioinspired synthesis of high-performance nanocomposite imprinted membrane by a polydopamine-assisted metal-organic method. J. Hazard. Mater. 323, 663-673.
  • Wu, Y., Lu, J., Lin, X., Gao, J., Chen, L., Cui, J., Lv, P., Liu, X., Meng, M., Yan, Y., 2018. Bioinspired Synthesis of Janus Nanocomposite-Incorporated Molecularly Imprinted Membranes for Selective Adsorption and Separation Applications, ACS Sustain. Chem. Eng. 6, 9104–9112.
  • Wulff, G., Grobe-Einsler, R.,Vesper, W., Sarhan, A., 1977. Enzyme-analogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers, Die Makromol. Chemie. 178, 2817–2825.
  • Wulff, G., Liu, J., 2012. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers: The Role of Transition State Stabilization, Acc. Chem. Res. 45, 239–247.
  • Xia, Y.Q., Guo, T.Y., Song, M.D., Zhang, B.H., Zhang, B.L., 2005. Hemoglobin recognition by imprinting in semiinterpenetrating polymer network hydrogel based on poly-acrylamide and chitosan. Biomacromolecules. 6, 2601-2606.
  • Xua, S., Lua, H., Chen, L., 2014. Double water compatible molecularly imprinted polymers appliedas solid-phase extraction sorbent for selective preconcentration anddetermination of triazines in complicated water samples. J. Chromatogr. A, 1350, 23–29.
  • Yanase, Y., Hiragun, T., Yanase, T., Kawaguchi, T., Ishii, K., Hide, M., 2013. Application of spr imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy, Allergol. Int. 62, 163-169.
  • Yang, Y., Niu, H., Zhang, H., 2016. Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly ımprinted polymer microparticles. Appl. Mater. Interfaces, 8, 15741−15749.
  • Yang, Y., Wang, Z., Niu, Z., Zhang, H., 2016. One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples. Biosens. Bioelectron., 86, 580–587.
  • Yang, Z., Zhang, C., 2009. Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution, Sensor. Actuator. B-Chem. 142, 210–215.
  • Yasmin J., Ahmed, M.R., Cho, B.-K., 2016. Biosensors and their applications in food safety: a review, J. Biosystem. Eng., 41(3), 240-254.
  • Yavuz, H., Çetin, K., Akgönüllü, S., Battal, D., Denizli, A. 2018. Therapeutic protein and drug imprinted nanostructures as controlled delivery tools, in: Alexandru Mihai Grumezescu (Ed.), Des. Dev. New Nanocarriers, William Andrew Publishing, pp. 439–473.
  • Zhang, Y., Deng, C., Liu, S., Wu, J., Chen, Z., Li, C., Lu, W., 2015. Active targeting of tumors through conformational epitope imprinting. Angew. Chem., Int. Ed., 54, 5157−5160.
  • Zhao, L., Zhao, F., Zeng, B. 2014. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosens. Bioelectron. 60, 71–76.
  • Zhao, Z., Jiang H., 2010. Enzyme-based electrochemical biosensors. (Eds.). Pier Andrea Serra, Biosensors, Intech, Croatia, pp. 1-22.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nilay BERELİ
FACULTY OF SCIENCE
0000-0001-8178-0755
Türkiye


Semra AKGÖNÜLLÜ
HACETTEPE UNIVERSITY
0000-0003-2245-8074
Türkiye


Sevgi ASLIYÜCE
HACETTEPE UNIVERSITY
0000-0003-0002-0856
Türkiye


Duygu ÇİMEN
HACETTEPE UNIVERSITY
0000-0002-5356-0998
Türkiye


İlgim GÖKTÜRK
HACETTEPE UNIVERSITY
0000-0001-7292-7241
Türkiye


Deniz TÜRKMEN
HACETTEPE UNIVERSITY
0000-0003-0161-172X
Türkiye


Handan YAVUZ
HACETTEPE UNIVERSITY
0000-0001-5454-7624
Türkiye


Adil DENİZLİ (Primary Author)
HACETTEPE UNIVERSITY
0000-0001-7548-5741
Türkiye

Publication Date November 1, 2020
Published in Issue Year 2020, Volume 48, Issue 5

Cite

Bibtex @review { hjbc801427, journal = {Hacettepe Journal of Biology and Chemistry}, issn = {2687-475X}, eissn = {2687-475X}, address = {Hacettepe Üniversitesi Fen Fakültesi, 06532, Beytepe/ ANKARA/ TÜRKİYE}, publisher = {Hacettepe University}, year = {2020}, volume = {48}, pages = {575 - 601}, doi = {10.15671/hjbc.801427}, title = {Molecular Imprinting Technology for Biomimetic Assemblies}, key = {cite}, author = {Bereli, Nilay and Akgönüllü, Semra and Aslıyüce, Sevgi and Çimen, Duygu and Göktürk, İlgim and Türkmen, Deniz and Yavuz, Handan and Denizli, Adil} }
APA Bereli, N. , Akgönüllü, S. , Aslıyüce, S. , Çimen, D. , Göktürk, İ. , Türkmen, D. , Yavuz, H. & Denizli, A. (2020). Molecular Imprinting Technology for Biomimetic Assemblies . Hacettepe Journal of Biology and Chemistry , The 100 Year of Polymers , 575-601 . DOI: 10.15671/hjbc.801427
MLA Bereli, N. , Akgönüllü, S. , Aslıyüce, S. , Çimen, D. , Göktürk, İ. , Türkmen, D. , Yavuz, H. , Denizli, A. "Molecular Imprinting Technology for Biomimetic Assemblies" . Hacettepe Journal of Biology and Chemistry 48 (2020 ): 575-601 <https://dergipark.org.tr/en/pub/hjbc/issue/57319/801427>
Chicago Bereli, N. , Akgönüllü, S. , Aslıyüce, S. , Çimen, D. , Göktürk, İ. , Türkmen, D. , Yavuz, H. , Denizli, A. "Molecular Imprinting Technology for Biomimetic Assemblies". Hacettepe Journal of Biology and Chemistry 48 (2020 ): 575-601
RIS TY - JOUR T1 - Molecular Imprinting Technology for Biomimetic Assemblies AU - Nilay Bereli , Semra Akgönüllü , Sevgi Aslıyüce , Duygu Çimen , İlgim Göktürk , Deniz Türkmen , Handan Yavuz , Adil Denizli Y1 - 2020 PY - 2020 N1 - doi: 10.15671/hjbc.801427 DO - 10.15671/hjbc.801427 T2 - Hacettepe Journal of Biology and Chemistry JF - Journal JO - JOR SP - 575 EP - 601 VL - 48 IS - 5 SN - 2687-475X-2687-475X M3 - doi: 10.15671/hjbc.801427 UR - https://doi.org/10.15671/hjbc.801427 Y2 - 2020 ER -
EndNote %0 Hacettepe Journal of Biology and Chemistry Molecular Imprinting Technology for Biomimetic Assemblies %A Nilay Bereli , Semra Akgönüllü , Sevgi Aslıyüce , Duygu Çimen , İlgim Göktürk , Deniz Türkmen , Handan Yavuz , Adil Denizli %T Molecular Imprinting Technology for Biomimetic Assemblies %D 2020 %J Hacettepe Journal of Biology and Chemistry %P 2687-475X-2687-475X %V 48 %N 5 %R doi: 10.15671/hjbc.801427 %U 10.15671/hjbc.801427
ISNAD Bereli, Nilay , Akgönüllü, Semra , Aslıyüce, Sevgi , Çimen, Duygu , Göktürk, İlgim , Türkmen, Deniz , Yavuz, Handan , Denizli, Adil . "Molecular Imprinting Technology for Biomimetic Assemblies". Hacettepe Journal of Biology and Chemistry 48 / 5 (November 2020): 575-601 . https://doi.org/10.15671/hjbc.801427
AMA Bereli N. , Akgönüllü S. , Aslıyüce S. , Çimen D. , Göktürk İ. , Türkmen D. , Yavuz H. , Denizli A. Molecular Imprinting Technology for Biomimetic Assemblies. HJBC. 2020; 48(5): 575-601.
Vancouver Bereli N. , Akgönüllü S. , Aslıyüce S. , Çimen D. , Göktürk İ. , Türkmen D. , Yavuz H. , Denizli A. Molecular Imprinting Technology for Biomimetic Assemblies. Hacettepe Journal of Biology and Chemistry. 2020; 48(5): 575-601.
IEEE N. Bereli , S. Akgönüllü , S. Aslıyüce , D. Çimen , İ. Göktürk , D. Türkmen , H. Yavuz and A. Denizli , "Molecular Imprinting Technology for Biomimetic Assemblies", Hacettepe Journal of Biology and Chemistry, vol. 48, no. 5, pp. 575-601, Nov. 2020, doi:10.15671/hjbc.801427