BibTex RIS Cite

Improvement of mechanical, dimensional and biological stability of woods via gamma-radiation by using allyl alcohol- based copolymers

Year 2014, Volume: 42 Issue: 1, 105 - 114, 01.03.2014

Abstract

This paper reviews the synthesis and characterization of allyl alcohol based copolymers and their applicati- on into woods and the improvement of dimensional, mechanical and biological stability of woods by using gamma-radiation. Selection of monomer and/or monomer pairs, copolymerization, impregnation, gamma-irradiation, artifical ageing, dimensional and mechanical stability, biodegradation of treated woods are menti- oned. Novel treatments and technologies are also presented.

References

  • 1. D. Solpan, O. Guven, Preparation and properties of some wood/(co)polymer composites , Die Angewandte Mak. Chem., 269 (1999) 30.
  • 2. D. Solpan, O. Guven, Preservation of beech and spruce wood by allyl alcohol-based copolymers, Radiat. Phys. Chem., 54 (1999) 583.
  • 3. D. Solpan, O. Guven, Improvement of mechanical stability of beechwood by radiation-ınduced in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, J. Appl. Polym. Sci., 71 (1999) 1515.
  • 4. R.E. Hug, Past, present and future, For. Prod. J., 17 (1967) 16.
  • 5. E. Schaffer, Consolidation of softwood artifacts, Studies Conserv., 16 (1971) 110.
  • 6. R. Schaudy, E. Proksch, Wood-plastic combinations with high dimensional stability, Ind. Eng. Chem. Prod. Res. Dev., 21 (1982) 369.
  • 7. IAEA, Impregnated fibrous materials. Report of a study group, Bangkok, 20–24, November, 1967. International Atomic Energy Agency, Vienna, Austria, 1968.
  • 8. E. Schaffer, Consolidation of painted wooden artifacts, Studies Conserv., 19 (1974) 212.
  • 9. R.A. Munnikendam, T.J. Wolschrijn, Further remarks on the impregnation of porous materials with monomers, Studies Conserv.,14 (1969) 132.
  • 10. R.A. Munnikendam, Conservation of waterlogged wood using radiation polymerization, Studies Conserv., 12 (1967) 70.
  • 11. B.L. Stark, Waterlogged wood preservation with polyethylene glycol, Studies Conserv., 21 (1976) 154.
  • 12. E.J. Gibson, R.A. Laidlow, G.A. Smith, Dimensional stabilisation of wood, J. Appl. Chem., 16 (1966) 58.
  • 13. D. Hilman, M.E. Flarian, A simple conservation treatment for wet archaeological wood, Studies Conserv.,30 (1985) 39.
  • 14. R.A. Morgan, J. Hillam, J.M. Coles, Reconciling treering sampling with conservation, Antiquity, 55 (1981) 90.
  • 15. P. Hoffman, A rapid method fort he detection of polyethylene glycols (PEG) in wood, Studies Conserv., 28 (1983) 189.
  • 16. A.E. Witt, P.D. Henise, L.W. Griest, Acrylic woods in the United States, Radiat. Phys. Chem., 18 (1961) 67.
  • 17. A.B. Moustafa, E.E. Kandili, Some wood polymer composites II, Angew. Makromol. Chem., 65 (1977) 121.
  • 18. F.Y.C. Boey, L.H.L. Chia, S.H. Teoh, Compression, bend, and impact testing of some tropical wood-polymer composites, Radiat. Phys. Chem., 26 (1985) 415.
  • 19. B.A. Bendtsen, Modeling the stress-compression relationships in wood in compression perpendicular to grain, For. Prod. J., 29 (1979) 42.
  • 20. L.J. Mathias, S. Lee, J.R. Wright, S.C. Warren, Improvement of wood properties by impregnation with multifunctional monomers, J. Appl. Polym. Sci., 42 (1991) 55.
  • 21. D.G. Adams, E.T. Choong, R.C. Mcllheny, Bending strength of radiation-produced southern pine woodplastic combinations, For. Prod. J., 20 (1970) 25.
  • 22. R. Barclay, Wood consolidation on an eigteenth century english fire engine, Studies Conserv., 26 (1981) 133.
  • 23. R.A.V. Raff, I.W. Herrick, M.F. Adams, Flame-retardant wood, For. Prod. J., 16 (1966) 43.
  • 24. C.H. Collins, C.C. Thomas, C.M. Hyche, Rates of polymerization of monomers in maple and birch, For. Prod. J., 17 (1967) 52.
  • 25. C.E. Shuler, Gamma irradiation effects on modulus of elsticity of engelman spruce, For. Prod. J., 21 (1971) 49.
  • 26. D. Solpan, O. Guven, Comparison of the dimensional stabilities of oak and cedar wood preserved by in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, Die Angewandte Mak. Chem., 259 (1998) 33.
  • 27. A. Moncrieff, Review of recent literature on wood, Studies Conserv., 13 (1968) 186.
  • 28. D. Solpan, O. Guven, A comparative study of using allyl alcohol based copolymers in the preservation of wood: oak vs. cedar, Polym. Composite., 21 (2000) 196.
  • 29. D. Solpan, O. Güven, Radiation initiated copolymerization of allyl 2,3 epoxy propyl ether with acrylonitrile and methyl methacrylate and theri potential use in the preservation of wooden objects, Radiat. Phys. Chem., 46 (1995) 889.
  • 30. J.E. Langwig, J.A. Meyer, R.W. Davidson, New monomres used in making wood-plastics, For. Prod. J., 19 (1969) 57.
  • 31. W.E. Loos, R.E. Walters, J.A. Kent, Impregnation of wood with vinyl monomers, For. Prod. J., 17 (1967) 40.
  • 32. W.E. Loos, G.L. Robinson, Rates of swelling of wood in vinyl monomers, For. Prod. J., 18 (1968) 109.
  • 33. P.R. Blankenhom, W.K. Murphey, L.E. Rishel, D.E. Kline, Some mechanical properties of impregnated bark board, For. Prod. J., 27 (1977) 31.
  • 34. S.M. Nakhla, A comparative study of resins fort he consolidation of wooden objects, Studies Conserv., 31 (1986) 38.
  • 35. D. Solpan, O. Guven, Improvement of the mechanical stability of oak by radiation induced in-situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, Die Angewandte Mak. Chem., 257 (1998) 13.
  • 36. D. Solpan, O. Guven, The thermal stability of copolymers of ally1 alcohol with acrylonitrile and methyl methacrylate, Polym. Deg. Stability, 60 (1998) 367.
  • 37. D. Solpan, O. Guven, Thermal stability of the copolymers of allyl glycidyl ether with acrylonitrile and methyl methacrylate obtained via gamma irradiation, Radiat. Phys. Chem., 57 (2000) 173.
  • 38. W. Hofmann, Rubber Technology Handbook. Hanser, London, 1988.
  • 39. D. Solpan, O. Guven, Radiation initiated copolymerization of allyl alcohol with acrylonitrile, Radiat. Phys. Chem. 48 (1996) 55.
  • 40. H.F. Mark, N.G. Galyord, N.B. Bikales, Encylopedia of Polymer Science and Technology, Chap. 4, pp. 750- 756. Wiley- lnterscience, New York, 1966.
  • 41. J. Kroschwitz, Enycylopedia of Polymer Science and Engineering, pp. 201-206. Wiley-Interscience, New York, 1990.
  • 42. Gindin and Medvedev, In Encyclopaedia of Polymer Science and Technology, (Edited by Mark et al.), pp. 756. Wiley-Interscience, New York, 1966.
  • 43. M. Fineman, S. Ross, Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci., 5 (1950) 259.
  • 44. T. Kelen, F. Tüdös, Analysis of the linear methods for determining copolymerization reactivity ratios. I.A new improved linear graphic method. J. Macromol. Sci. Chem. Agr., 1 (1975) 1.
  • 45. P. Tidwell, G.A. Mortimer, An improved method of calculating copolymerization reactivity ratios. J. Polym. Sci., A3 (1965) 369.
  • 46. D.W. Behnken, Estimation of copolymer reactivity ratios. An example of non-linear estimation. J. Polym. Sci., A2 (1964) 645.
  • 47. T. Alfrey, C.C.Jr. Price, Relative reactivities in vinyl copolymerization. J. Polym. Sci., 2 (1947) 101.
  • 48. S. Basan, O. Guven, A comparison of various isothermal thermogravimetric methods applied to the degradation of PVC. Thermochim. Acta, 106 (1986) 169.
  • 49. K.C. Frisch, S.L. Reegen, Ring-Opening Polymerization. Dekker, New York, 1969.
  • 50. D. Solpan, O. Guven, The copolymerization of allyl glycidyl ether with acrylonitrile initiated by gammarays, J. Polym. Sci. Part A Polym. Chem., 34 (1996) 833.
  • 51. B.A. Meylan, B.G. Butterfield, Three-dimensional structure of wood, 2nd ed, Chapman and Hall, London, NewYork, 1990.
  • 52. R.W. Meyer, L. Leney, Shake in coniferous wood-An anatomical study, For. Prod. J. 18 (1968) 51.
  • 53. H.A. Core, W.A. Cote, A.C. Day, Wood Structure and Identification, 2nd ed., Syracuse University Press, New York, 1979.
  • 54. D. Solpan, O. Guven, Modification of some mechanical properties of spruce by radiation ınduced copolymerization of acrylonitrile and methyl methacrylate with allyl glycidyl ether, Polym. Composite., 22 (2001) 90.
  • 55. S. Chow, G.E. Troughton, Determination of melamineformaldehyde content in wood and cellulose products by infrared spectrometry, For. Prod. J., 19 (1969) 24.
  • 56. M.W. Spindler, R. Pateman, P.R. Hills, Polymer impregnated fibrous materials: The resistance of polymer-wood composites to chemical corrosion, Composites, 4 (1973) 246.
  • 57. L.H.L. Chia, K. Hon Kon, Preparation and properties of some wood-plastic combinations involving some tropical commercial woods, J. Macromol. Sci., Chem. A16 (1981) 803.
  • 58. E. Simunkova, J. Zelihger, Consolidation of wood by the method of monomer polymerization in the object, Studies Conserv., 28 (1983) 133.
  • 59. P.R. Hills, Radiation polymerized composites based on wood: new materials for use in corrosive environments, Composites, 3 (1972) 211.
  • 60. V.L. Karpov. V. Serenkov, Radiation makes better wood and copolymers, Nucleonics, 18 (1960) 88.
  • 61. J.A. Meyer, J.E. Langwig, Influence of polymer impregnation on mechanical properties of basswood, For. Prod. J., 18 (1968) 33.
  • 62. E.J. Gibson, R.A. Laidlaw, G.A.Smith, Dimensional stabilisation of wood, J. Appl. Chem., 16 (1966) 58.
  • 63. H. Tarkow, W.C. Feist, Interaction of wood with polymeric materials. Penetration versus molecular size, For. Prod. J., 16 (1966) 61.
  • 64. R.A. Parham, Scanning electron microscopy: A practical tool in wood technology, For. Prod. J., 25 (1975) 19.
  • 65. J.F. Siau, J.A. Meyer, Comparison of properties of heat and radiation cured wood-polymer combinations, For. Prod. J., 16 (1966) 46.

Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi

Year 2014, Volume: 42 Issue: 1, 105 - 114, 01.03.2014

Abstract

B u makale allil alkol esaslı kopolimerlerin sentezi ve karakterizasyonunu ve gama-ışınlaması kullanılarak bu kopolimerlerin odunlara uygulanması yoluyla odunların boyutsal, mekanik ve biyolojik kararlılıklarının artırılmasını özetlemektedir. Monomer ve/veya monomer çiftlerinin seçimi, kopolimerizasyon, emprenye, gama-ışınlama, muamele görmüş odunların yapay yaşlandırılması, boyutsal ve mekanik kararlılığı, biyobozunmasından bahsedilmektedir. Muamele ve teknolojilerde verilmiştir

References

  • 1. D. Solpan, O. Guven, Preparation and properties of some wood/(co)polymer composites , Die Angewandte Mak. Chem., 269 (1999) 30.
  • 2. D. Solpan, O. Guven, Preservation of beech and spruce wood by allyl alcohol-based copolymers, Radiat. Phys. Chem., 54 (1999) 583.
  • 3. D. Solpan, O. Guven, Improvement of mechanical stability of beechwood by radiation-ınduced in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, J. Appl. Polym. Sci., 71 (1999) 1515.
  • 4. R.E. Hug, Past, present and future, For. Prod. J., 17 (1967) 16.
  • 5. E. Schaffer, Consolidation of softwood artifacts, Studies Conserv., 16 (1971) 110.
  • 6. R. Schaudy, E. Proksch, Wood-plastic combinations with high dimensional stability, Ind. Eng. Chem. Prod. Res. Dev., 21 (1982) 369.
  • 7. IAEA, Impregnated fibrous materials. Report of a study group, Bangkok, 20–24, November, 1967. International Atomic Energy Agency, Vienna, Austria, 1968.
  • 8. E. Schaffer, Consolidation of painted wooden artifacts, Studies Conserv., 19 (1974) 212.
  • 9. R.A. Munnikendam, T.J. Wolschrijn, Further remarks on the impregnation of porous materials with monomers, Studies Conserv.,14 (1969) 132.
  • 10. R.A. Munnikendam, Conservation of waterlogged wood using radiation polymerization, Studies Conserv., 12 (1967) 70.
  • 11. B.L. Stark, Waterlogged wood preservation with polyethylene glycol, Studies Conserv., 21 (1976) 154.
  • 12. E.J. Gibson, R.A. Laidlow, G.A. Smith, Dimensional stabilisation of wood, J. Appl. Chem., 16 (1966) 58.
  • 13. D. Hilman, M.E. Flarian, A simple conservation treatment for wet archaeological wood, Studies Conserv.,30 (1985) 39.
  • 14. R.A. Morgan, J. Hillam, J.M. Coles, Reconciling treering sampling with conservation, Antiquity, 55 (1981) 90.
  • 15. P. Hoffman, A rapid method fort he detection of polyethylene glycols (PEG) in wood, Studies Conserv., 28 (1983) 189.
  • 16. A.E. Witt, P.D. Henise, L.W. Griest, Acrylic woods in the United States, Radiat. Phys. Chem., 18 (1961) 67.
  • 17. A.B. Moustafa, E.E. Kandili, Some wood polymer composites II, Angew. Makromol. Chem., 65 (1977) 121.
  • 18. F.Y.C. Boey, L.H.L. Chia, S.H. Teoh, Compression, bend, and impact testing of some tropical wood-polymer composites, Radiat. Phys. Chem., 26 (1985) 415.
  • 19. B.A. Bendtsen, Modeling the stress-compression relationships in wood in compression perpendicular to grain, For. Prod. J., 29 (1979) 42.
  • 20. L.J. Mathias, S. Lee, J.R. Wright, S.C. Warren, Improvement of wood properties by impregnation with multifunctional monomers, J. Appl. Polym. Sci., 42 (1991) 55.
  • 21. D.G. Adams, E.T. Choong, R.C. Mcllheny, Bending strength of radiation-produced southern pine woodplastic combinations, For. Prod. J., 20 (1970) 25.
  • 22. R. Barclay, Wood consolidation on an eigteenth century english fire engine, Studies Conserv., 26 (1981) 133.
  • 23. R.A.V. Raff, I.W. Herrick, M.F. Adams, Flame-retardant wood, For. Prod. J., 16 (1966) 43.
  • 24. C.H. Collins, C.C. Thomas, C.M. Hyche, Rates of polymerization of monomers in maple and birch, For. Prod. J., 17 (1967) 52.
  • 25. C.E. Shuler, Gamma irradiation effects on modulus of elsticity of engelman spruce, For. Prod. J., 21 (1971) 49.
  • 26. D. Solpan, O. Guven, Comparison of the dimensional stabilities of oak and cedar wood preserved by in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, Die Angewandte Mak. Chem., 259 (1998) 33.
  • 27. A. Moncrieff, Review of recent literature on wood, Studies Conserv., 13 (1968) 186.
  • 28. D. Solpan, O. Guven, A comparative study of using allyl alcohol based copolymers in the preservation of wood: oak vs. cedar, Polym. Composite., 21 (2000) 196.
  • 29. D. Solpan, O. Güven, Radiation initiated copolymerization of allyl 2,3 epoxy propyl ether with acrylonitrile and methyl methacrylate and theri potential use in the preservation of wooden objects, Radiat. Phys. Chem., 46 (1995) 889.
  • 30. J.E. Langwig, J.A. Meyer, R.W. Davidson, New monomres used in making wood-plastics, For. Prod. J., 19 (1969) 57.
  • 31. W.E. Loos, R.E. Walters, J.A. Kent, Impregnation of wood with vinyl monomers, For. Prod. J., 17 (1967) 40.
  • 32. W.E. Loos, G.L. Robinson, Rates of swelling of wood in vinyl monomers, For. Prod. J., 18 (1968) 109.
  • 33. P.R. Blankenhom, W.K. Murphey, L.E. Rishel, D.E. Kline, Some mechanical properties of impregnated bark board, For. Prod. J., 27 (1977) 31.
  • 34. S.M. Nakhla, A comparative study of resins fort he consolidation of wooden objects, Studies Conserv., 31 (1986) 38.
  • 35. D. Solpan, O. Guven, Improvement of the mechanical stability of oak by radiation induced in-situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate, Die Angewandte Mak. Chem., 257 (1998) 13.
  • 36. D. Solpan, O. Guven, The thermal stability of copolymers of ally1 alcohol with acrylonitrile and methyl methacrylate, Polym. Deg. Stability, 60 (1998) 367.
  • 37. D. Solpan, O. Guven, Thermal stability of the copolymers of allyl glycidyl ether with acrylonitrile and methyl methacrylate obtained via gamma irradiation, Radiat. Phys. Chem., 57 (2000) 173.
  • 38. W. Hofmann, Rubber Technology Handbook. Hanser, London, 1988.
  • 39. D. Solpan, O. Guven, Radiation initiated copolymerization of allyl alcohol with acrylonitrile, Radiat. Phys. Chem. 48 (1996) 55.
  • 40. H.F. Mark, N.G. Galyord, N.B. Bikales, Encylopedia of Polymer Science and Technology, Chap. 4, pp. 750- 756. Wiley- lnterscience, New York, 1966.
  • 41. J. Kroschwitz, Enycylopedia of Polymer Science and Engineering, pp. 201-206. Wiley-Interscience, New York, 1990.
  • 42. Gindin and Medvedev, In Encyclopaedia of Polymer Science and Technology, (Edited by Mark et al.), pp. 756. Wiley-Interscience, New York, 1966.
  • 43. M. Fineman, S. Ross, Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci., 5 (1950) 259.
  • 44. T. Kelen, F. Tüdös, Analysis of the linear methods for determining copolymerization reactivity ratios. I.A new improved linear graphic method. J. Macromol. Sci. Chem. Agr., 1 (1975) 1.
  • 45. P. Tidwell, G.A. Mortimer, An improved method of calculating copolymerization reactivity ratios. J. Polym. Sci., A3 (1965) 369.
  • 46. D.W. Behnken, Estimation of copolymer reactivity ratios. An example of non-linear estimation. J. Polym. Sci., A2 (1964) 645.
  • 47. T. Alfrey, C.C.Jr. Price, Relative reactivities in vinyl copolymerization. J. Polym. Sci., 2 (1947) 101.
  • 48. S. Basan, O. Guven, A comparison of various isothermal thermogravimetric methods applied to the degradation of PVC. Thermochim. Acta, 106 (1986) 169.
  • 49. K.C. Frisch, S.L. Reegen, Ring-Opening Polymerization. Dekker, New York, 1969.
  • 50. D. Solpan, O. Guven, The copolymerization of allyl glycidyl ether with acrylonitrile initiated by gammarays, J. Polym. Sci. Part A Polym. Chem., 34 (1996) 833.
  • 51. B.A. Meylan, B.G. Butterfield, Three-dimensional structure of wood, 2nd ed, Chapman and Hall, London, NewYork, 1990.
  • 52. R.W. Meyer, L. Leney, Shake in coniferous wood-An anatomical study, For. Prod. J. 18 (1968) 51.
  • 53. H.A. Core, W.A. Cote, A.C. Day, Wood Structure and Identification, 2nd ed., Syracuse University Press, New York, 1979.
  • 54. D. Solpan, O. Guven, Modification of some mechanical properties of spruce by radiation ınduced copolymerization of acrylonitrile and methyl methacrylate with allyl glycidyl ether, Polym. Composite., 22 (2001) 90.
  • 55. S. Chow, G.E. Troughton, Determination of melamineformaldehyde content in wood and cellulose products by infrared spectrometry, For. Prod. J., 19 (1969) 24.
  • 56. M.W. Spindler, R. Pateman, P.R. Hills, Polymer impregnated fibrous materials: The resistance of polymer-wood composites to chemical corrosion, Composites, 4 (1973) 246.
  • 57. L.H.L. Chia, K. Hon Kon, Preparation and properties of some wood-plastic combinations involving some tropical commercial woods, J. Macromol. Sci., Chem. A16 (1981) 803.
  • 58. E. Simunkova, J. Zelihger, Consolidation of wood by the method of monomer polymerization in the object, Studies Conserv., 28 (1983) 133.
  • 59. P.R. Hills, Radiation polymerized composites based on wood: new materials for use in corrosive environments, Composites, 3 (1972) 211.
  • 60. V.L. Karpov. V. Serenkov, Radiation makes better wood and copolymers, Nucleonics, 18 (1960) 88.
  • 61. J.A. Meyer, J.E. Langwig, Influence of polymer impregnation on mechanical properties of basswood, For. Prod. J., 18 (1968) 33.
  • 62. E.J. Gibson, R.A. Laidlaw, G.A.Smith, Dimensional stabilisation of wood, J. Appl. Chem., 16 (1966) 58.
  • 63. H. Tarkow, W.C. Feist, Interaction of wood with polymeric materials. Penetration versus molecular size, For. Prod. J., 16 (1966) 61.
  • 64. R.A. Parham, Scanning electron microscopy: A practical tool in wood technology, For. Prod. J., 25 (1975) 19.
  • 65. J.F. Siau, J.A. Meyer, Comparison of properties of heat and radiation cured wood-polymer combinations, For. Prod. J., 16 (1966) 46.
There are 65 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Dilek Şolpan This is me

Olgun Güven This is me

Publication Date March 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 1

Cite

APA Şolpan, D., & Güven, O. (2014). Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi. Hacettepe Journal of Biology and Chemistry, 42(1), 105-114.
AMA Şolpan D, Güven O. Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi. HJBC. March 2014;42(1):105-114.
Chicago Şolpan, Dilek, and Olgun Güven. “Odunların Mekanik, Boyutsal Ve Biyolojik kararlılığının Allil Alkol Esaslı Kopolimerler kullanılarak Gama-ışınlamasıyla iyileştirilmesi”. Hacettepe Journal of Biology and Chemistry 42, no. 1 (March 2014): 105-14.
EndNote Şolpan D, Güven O (March 1, 2014) Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi. Hacettepe Journal of Biology and Chemistry 42 1 105–114.
IEEE D. Şolpan and O. Güven, “Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi”, HJBC, vol. 42, no. 1, pp. 105–114, 2014.
ISNAD Şolpan, Dilek - Güven, Olgun. “Odunların Mekanik, Boyutsal Ve Biyolojik kararlılığının Allil Alkol Esaslı Kopolimerler kullanılarak Gama-ışınlamasıyla iyileştirilmesi”. Hacettepe Journal of Biology and Chemistry 42/1 (March 2014), 105-114.
JAMA Şolpan D, Güven O. Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi. HJBC. 2014;42:105–114.
MLA Şolpan, Dilek and Olgun Güven. “Odunların Mekanik, Boyutsal Ve Biyolojik kararlılığının Allil Alkol Esaslı Kopolimerler kullanılarak Gama-ışınlamasıyla iyileştirilmesi”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 1, 2014, pp. 105-14.
Vancouver Şolpan D, Güven O. Odunların mekanik, boyutsal ve biyolojik kararlılığının allil alkol esaslı kopolimerler kullanılarak gama-ışınlamasıyla iyileştirilmesi. HJBC. 2014;42(1):105-14.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc