BibTex RIS Cite

Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties

Year 2014, Volume: 42 Issue: 2, 281 - 290, 01.06.2014

Abstract

The white-rot fungus, Pycnoporus cinnabarinus, produces the natural phenoxazinone pigment, cinnabarinic acid CA , which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid 3- HAA . This reaction is necessary for the production of antibacterial pigment compounds by the fungus. In this study, the optimum conditions were determined to produce pigment from P. cinnabarinus in batch cultures. Isolated pigment was characterized as cinnabarinic acid by spectroscopic techniques, FT-IR; 1H NMR and LC- MS. Temperature-dependent change of CA was also investigated for the first time by using these techniques. It was observed that CA was converted to 3-HAA with increasing temperature and therefore its antibacterial effect was decreased.

References

  • 1. G. Sullivan, E.D. Henry, Occurrence and distribution of phenoxazinone pigments in the genus Pycnoporus. J. Pharm. Sci., 60 (1971) 1097–1098.
  • 2. J.Gripenberg, Fungus pigments VIII: The structure of cinnabarin and cinnabarinic acid. Acta Chem. Scan., 12 (1958) 603-610.
  • 3. C. Eggert, Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol. Res., 152 (1997) 315-318.
  • 4. N.Gerber, Phenoxazinones by oxidative dimesization of aminophenols. Canadian J. Chem., 46 (1968) 790.
  • 5. M. Le Roes-Hill, C. Goodwin, S. Burton, Phenoxazinone synthase: what’s in a name? (Review). Trends in Biotechnol., 27 (2009) 248-258.
  • 6. C. Eggert, U. Temp, J.F.D. Dean, K.E.L. Eriksson, Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Letters, 376 (1995) 202-206.
  • 7. S.L.R. Dhawan, M. Hanspal, R.C. Kuhad, Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Biores. Technol., 96 (2005) 1415–1418.
  • 8. U. Temp, C. Eggert, Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. App. Environ. Microbiol., 65 (1999) 389– 395.
  • 9. A. Imtiaj, L. TaeSoo, Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J. Agric. Sci., 3(3) (2007) 316-321.
  • 10. P.W. Brian, H.G. Hemming, Production of Antifungal and Antibacterial Substances by Fungi; Preliminary Examination of 166 Strains of Fungi Imperfecti. J. Gen. Microbiol., 1 (1947) 158-167.
  • 11. A. Smânia, F. Delle Monache, E.F.A. Smânia, M.L. Gil, L.C. Benchetrit, F.S. Cruz, Antibacterial activity of substance produced by the fungus Pycnoporus sanguineus (Fr.) merr.. J. Ethnopharm., 45 (1995) 177- 181.
  • 12. C. Eggert, U. Temp, K.E. Eriksson, Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Letters, 407 (1997) 89-92.
  • 13. C. Sigoillot, A. Lomascolo, E. Record, J.L. Robert, M. Asther, J.C. Sigoillot, Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase. Enzyme Microb. Technol., 31 (2002) 876–883.
  • 14. K. Li, P.S. Horanyi, R. Collins, R.S. Phillips, K.E.L. Eriksson, Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microb. Technol., 28 (2001) 301–307.
  • 15. S. Vanhulle, E. Enaud, M. Trovaslet, N. Nouaimeh, C.M. Bols, T. Keshavarz, T. Tron, G. Sannia, A.M. Corbisier, Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme Microb. Technol., 40 (2007) 1723–1731.
  • 16. J.C. Sigoillot, I. HerpoeÈ, P. Frasse, S. Moukha, L. Lesage-Meessen, A. Marcel, Laccase production by a monokaryotic strain of Pycnoporus cinnabarinus derived from a dikaryotic strain. W. J. Microbiol. & Biotechnol., 15 (1999) 481-484.
  • 17. H. Iwahashi, 3-Hydroxyanthranilic acid-derived compounds formed through electrochemical oxidation. J. Chromatography B: Biomedical Sciences and Applications, 736 (1999) 237-245.
  • 18. U. Temp, U. Zierold, C. Eggert, Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236 (1999) 169–177.
  • 19. H. Bermek, K. Li, K.E.L. Eriksson, Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp. J. Biotechnology, 66 (1998) 117–124.
  • 20. P.M. Coll, J.M.F. Abalos, J.R. Villanueva, R. Santamaria, P. Perez, Purification and characterization Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol., 59 (1993) 2607-2613.
  • 21. D. Wesenberg, I. Kyriakides, S.N. Agathos, White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 22 (2003) 161–187.
  • 22. C. Eggert, U. Temp, F.D. Jeffrey, J.F. Dean, K.E. Eriksson, A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Letter, 391 (1996) 144-148.
  • 23. M.K. Manthey, S.G. Pyne, R.J.W. Truscott, Autoxidation of 3-hydroxyanthranilic acid. J. Org. Chem., 53 (1988) 1486-1488.
  • 24. F. Bruyneel, E. Enaud, L. Billottet, S. Vanhulle, J. Marchand-Brynaert, Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation into a novel phenoxazinone dye by use of laccase. Eur. J. Org. Chem., (2008) 72–79.

Sinnabarinik asit: Pycnoporus cinnabarius’tan artırılmış üretimi, karakterizasyonu, yapısal ve işlevsel özellikleri

Year 2014, Volume: 42 Issue: 2, 281 - 290, 01.06.2014

Abstract

B eyaz çürükçül mantar olan Pycnoporus cinnabarinus, sinnabarinik asit CA olarak adlandırılan ve öncülü olan 3-hidroksiantranilik asitin 3-HAA lakkaz-katalizli oksidasyonu sonucu doğal fenoksizon pigmenti üretmektedir. Bu reaksiyon mantar tarafından antimikrobiyal pigmentin üretilmesinde önemlidir. Bu çalışmada, optimum koşullarda P. cinnabarinus tarafından pigment üretimini belirlenmiştir. İzole edilen pigment spektroskopik yöntemler, FT-IR, 1H NMR ve LC-MS kullanılarak sinnabarinik asit olarak karakterize edilmiştir. Bu teknikler kullanılarak ilk defa CA’in sıcaklığa bağlı değişimi bulunmuştur. Sıcaklığın arttırılmasıyla CA, 3-HAA’e dönüşmektedir ve bu nedenle pigmentin antimikrobiyal etkisi azalmaktadır

References

  • 1. G. Sullivan, E.D. Henry, Occurrence and distribution of phenoxazinone pigments in the genus Pycnoporus. J. Pharm. Sci., 60 (1971) 1097–1098.
  • 2. J.Gripenberg, Fungus pigments VIII: The structure of cinnabarin and cinnabarinic acid. Acta Chem. Scan., 12 (1958) 603-610.
  • 3. C. Eggert, Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol. Res., 152 (1997) 315-318.
  • 4. N.Gerber, Phenoxazinones by oxidative dimesization of aminophenols. Canadian J. Chem., 46 (1968) 790.
  • 5. M. Le Roes-Hill, C. Goodwin, S. Burton, Phenoxazinone synthase: what’s in a name? (Review). Trends in Biotechnol., 27 (2009) 248-258.
  • 6. C. Eggert, U. Temp, J.F.D. Dean, K.E.L. Eriksson, Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Letters, 376 (1995) 202-206.
  • 7. S.L.R. Dhawan, M. Hanspal, R.C. Kuhad, Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Biores. Technol., 96 (2005) 1415–1418.
  • 8. U. Temp, C. Eggert, Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. App. Environ. Microbiol., 65 (1999) 389– 395.
  • 9. A. Imtiaj, L. TaeSoo, Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J. Agric. Sci., 3(3) (2007) 316-321.
  • 10. P.W. Brian, H.G. Hemming, Production of Antifungal and Antibacterial Substances by Fungi; Preliminary Examination of 166 Strains of Fungi Imperfecti. J. Gen. Microbiol., 1 (1947) 158-167.
  • 11. A. Smânia, F. Delle Monache, E.F.A. Smânia, M.L. Gil, L.C. Benchetrit, F.S. Cruz, Antibacterial activity of substance produced by the fungus Pycnoporus sanguineus (Fr.) merr.. J. Ethnopharm., 45 (1995) 177- 181.
  • 12. C. Eggert, U. Temp, K.E. Eriksson, Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Letters, 407 (1997) 89-92.
  • 13. C. Sigoillot, A. Lomascolo, E. Record, J.L. Robert, M. Asther, J.C. Sigoillot, Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase. Enzyme Microb. Technol., 31 (2002) 876–883.
  • 14. K. Li, P.S. Horanyi, R. Collins, R.S. Phillips, K.E.L. Eriksson, Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microb. Technol., 28 (2001) 301–307.
  • 15. S. Vanhulle, E. Enaud, M. Trovaslet, N. Nouaimeh, C.M. Bols, T. Keshavarz, T. Tron, G. Sannia, A.M. Corbisier, Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme Microb. Technol., 40 (2007) 1723–1731.
  • 16. J.C. Sigoillot, I. HerpoeÈ, P. Frasse, S. Moukha, L. Lesage-Meessen, A. Marcel, Laccase production by a monokaryotic strain of Pycnoporus cinnabarinus derived from a dikaryotic strain. W. J. Microbiol. & Biotechnol., 15 (1999) 481-484.
  • 17. H. Iwahashi, 3-Hydroxyanthranilic acid-derived compounds formed through electrochemical oxidation. J. Chromatography B: Biomedical Sciences and Applications, 736 (1999) 237-245.
  • 18. U. Temp, U. Zierold, C. Eggert, Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236 (1999) 169–177.
  • 19. H. Bermek, K. Li, K.E.L. Eriksson, Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp. J. Biotechnology, 66 (1998) 117–124.
  • 20. P.M. Coll, J.M.F. Abalos, J.R. Villanueva, R. Santamaria, P. Perez, Purification and characterization Phenoloxidase (Laccase) from the Lignin-Degrading Basidiomycete PM1 (CECT 2971). Appl. Environ. Microbiol., 59 (1993) 2607-2613.
  • 21. D. Wesenberg, I. Kyriakides, S.N. Agathos, White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 22 (2003) 161–187.
  • 22. C. Eggert, U. Temp, F.D. Jeffrey, J.F. Dean, K.E. Eriksson, A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Letter, 391 (1996) 144-148.
  • 23. M.K. Manthey, S.G. Pyne, R.J.W. Truscott, Autoxidation of 3-hydroxyanthranilic acid. J. Org. Chem., 53 (1988) 1486-1488.
  • 24. F. Bruyneel, E. Enaud, L. Billottet, S. Vanhulle, J. Marchand-Brynaert, Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation into a novel phenoxazinone dye by use of laccase. Eur. J. Org. Chem., (2008) 72–79.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Aslı Göçenoğlu This is me

Nurdan Pazarlioglu This is me

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 2

Cite

APA Göçenoğlu, A., & Pazarlioglu, N. (2014). Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties. Hacettepe Journal of Biology and Chemistry, 42(2), 281-290.
AMA Göçenoğlu A, Pazarlioglu N. Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties. HJBC. June 2014;42(2):281-290.
Chicago Göçenoğlu, Aslı, and Nurdan Pazarlioglu. “Cinnabarinic Acid: Enhanced Production from Pycnoporus Cinnabarinus, Characterization, Structural and Functional Properties”. Hacettepe Journal of Biology and Chemistry 42, no. 2 (June 2014): 281-90.
EndNote Göçenoğlu A, Pazarlioglu N (June 1, 2014) Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties. Hacettepe Journal of Biology and Chemistry 42 2 281–290.
IEEE A. Göçenoğlu and N. Pazarlioglu, “Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties”, HJBC, vol. 42, no. 2, pp. 281–290, 2014.
ISNAD Göçenoğlu, Aslı - Pazarlioglu, Nurdan. “Cinnabarinic Acid: Enhanced Production from Pycnoporus Cinnabarinus, Characterization, Structural and Functional Properties”. Hacettepe Journal of Biology and Chemistry 42/2 (June 2014), 281-290.
JAMA Göçenoğlu A, Pazarlioglu N. Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties. HJBC. 2014;42:281–290.
MLA Göçenoğlu, Aslı and Nurdan Pazarlioglu. “Cinnabarinic Acid: Enhanced Production from Pycnoporus Cinnabarinus, Characterization, Structural and Functional Properties”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 2, 2014, pp. 281-90.
Vancouver Göçenoğlu A, Pazarlioglu N. Cinnabarinic acid: Enhanced production from Pycnoporus cinnabarinus, characterization, structural and functional properties. HJBC. 2014;42(2):281-90.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc