BibTex RIS Cite

Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite

Year 2015, Volume: 43 Issue: 3, 235 - 249, 01.09.2015

Abstract

Chemical contamination of water from a wide range of toxic compounds, in particular aromatic molecules, is a serio- us environmental problem owing to their potential human toxicity. In this study, activated clinoptilolite from Manisa- Gördes region AMGC was investigated for removal of phenol and chlorophenols i.e. o-chlorophenol, m-chlorophenol and p-chlorophenol . AMGC was characterized by FT-IR, TG/DTA, BET Surface Area, SEM, XRD, and XRF methods. Adsorption rates of phenol and chlorophenols were very high, and equilibrium was achieved in about 45 min. The maximum adsorptions of phenol and chlorophenols onto the AMGC were 7.977 mg/g for phenol, 9.846 mg/g for o-chlorophenol, 9.981 mg/g for m-chlorophenol, and 8.241 mg/g for p-chlorophenol. The effect of various parameters like adsorbent dose, pH and initial concentration were studied for their optimization. The adsorption values of phenol and chlorophenols decreased with incre- asing pH. Desorption of phenol and chlorophenols was achieved using ethanol solution 30%, v/v . The rate of adsorption of phenol and chlorophenols were found to be maximum at pH 6.25. Equilibrium adsorption data for phenol and chlorophenols were analyzed by using Freundlich and Langmuir adsorption isotherms. It was found that Freundlich adsorption isotherm is the most suitable model.

References

  • M. P. Titus, V. G. Molina, M. A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B-Environ., 47 (2004) 219–256.
  • HEW Publication No. (N10SH), Center for Disease Control, N10SH, Washington, 1976.
  • M.W. Slein, E.B. Sansone, Degradation of Chemical Carcinogens, Van Nostrand Reinhold, New York, 1980.
  • N.N. Dutta, S. Borthakur, R. Baruah, A novel process for recovery of phenol from alkaline wastewater: laboratory study and predesign cost estimate, Water Environ. Res., 70 (1998) 4-9.
  • G. Bayramoğlu, M.Y. Arıca, Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads, J. Hazar. Mater., 156 (2008) 148–155.
  • S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, J. Environ. Manage., 90 (2009) 1336–1349.
  • Environmental Health Criteria 93: Chlorophenol Other Than Pentachlorophenol, World Health Organization, Geneva, 1989, 208.
  • International Programme on Chemical Safety (IPCS), Poisons Information Monograph (PIM), 1989, 405.
  • B. Bardakçı, FTIR-ATR Spectroscopic Characterization of Monochlorophenols and Effects of Symmetry on Vibrational Frequencies, Çankaya Üniversitesi Fen- Edebiyat Fakültesi, J. Art. Sci., 7 (2007) 13-19.
  • A. Denizli, G. Özkan, M. Uçar, Removal of chlorophenols from aquatic systems with dye-affinity microbeads, Sep. Purif. Technol., 24 (2001) 255–262.
  • D. Tang, Z. Zheng, K. Lin, J. Luan, J. Zhang, Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber, J. Hazar. Mater., 143 (2007) 49–56.
  • V. G. Molina, J. Kallas, S. Esplugas, Wet oxidation of 4-chlorophenol Kinetic study, Chem. Eng. J., 126 (2007) 59–65.
  • M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: A review, Adv. Colloid Interfac., 143 (2008) 48–67.
  • E.G. Furuya, H.T. Chang, Y. Miura, K.E. Noll, A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon, Sep. Purif. Technol., 111 (1997) 69-78.
  • A. Denizli, G. Özkan, M. Uçar, Microbeads for Removal of Phenols and Nitrophenols from Aquatic Systems, J. Appl. Polym. Sci., 83 (2002) 2411–2418.
  • S. Şenel, A. Kara, G. Alsancak, A. Denizli, Removal of phenol and chlorophenols from water with reusable dye-affinity hollow fibers, J. Hazar. Mater. B, 138 (2006) 317–324.
  • A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite, J. Hazar. Mater., 144 (2007) 307–315.
  • S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11–24.
  • S.P. Kamble, P.A. Mangrulkar, A.K. Bansiwal, S.S. Rayalu, Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chem. Eng. J., 138 (2008) 73–83.
  • M.L. Soto, A. Moure, H. Dominguez, J.C. Parajo, Recovery, concentration and purification of phenolic compounds by adsorption: A review, J. Food Eng., 105 (2011) 1–27.
  • R.I. Yousef, B. El-Eswed, The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite, Colloids Surface A., 334 (2009) 92–99.
  • L. Damjanovi, V. Raki, V. Rac, D. Stoši, A. Auroux, The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazar. Mater., 184 (2010) 477–484.
  • A. Denizli, N. Cihangir, N. Tüzmen, G. Alsancak, Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju, Bioresource Technol., 96 (2005) 59-62.
  • K. Tatsumi, S. Wada, H. Ichikawa, Removal of chlorophenols from wastewater by immobilized HPR, Biotechnol. Bioeng., 51 (1996) 126–130.
  • S. Uçar, Sulu Ortamda Bulunan Fenol ve Klorofenollerin Aktive Edilmiş Klinoptilolit Kullanılarak Uzaklaştırılması, Master Thesis, Afyon Kocatepe University, 2009.
  • M. Ghiaci, A. Abbaspur, R. Kiaa, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM- 41 Sep. Purif. Technol., 40 (2004) 217-219.
  • D.W. Breck, Zeolite molecular sieves: structure, chemistry, and use. New York: Wiley; 1974.
  • A.D. Bahaallddin, Ammonium and Lead Exchange in Clinoptilolite Zeolite Column, Master Thesis, METU, 2010
  • B.E. Alver, M. Sakızcı, E. Yörükoğulları, Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study J. Therm. Anal. Calorim., 100 (2010) 19–26.
  • A. Evcin, O. Tutkun, Pervaporation Separation of Ethanol-Water Mixtures by Zeolite Filled Polymeric Membranes, Ceram-Silikaty., 53 (2009) 250-253.
  • Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water, J. Hazard Mater., 97 (2003) 219-243.
  • F. Su, L. Lv, M.H. Tee, X.S. Zhao, Phenol adsorption on zeolite-templated porous carbons with different pore-structural and surface properties, Carbon., 43 (2005) 1156-1164.
  • T. Şişmanoglu, S. Pura, Adsorption of aqueous nitrophenols on clinoptilolite, Colloid Surface A., 180 (2001) 180, 1-6.
  • O. Korkuna, R. Leboda, J. Skubiszewska-Ziba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mat., 87 (2006) 243–254.
  • D. Ming and J. Dixon, Quantitative Determination of Clinoptilolite in Soils by a Cation-Exchange Capacity Method, Clay. Clay Miner., 35 (1987) 463-468.
  • M. Yılgın, D. Akkoca, “Bigadiç Klinoptilolitik Tüfün Kimyası, Yüzey Alanı ve Gözeneklilik Özelliklerine Farklı Asitlerin Etkilerinin İncelenmesi”, Sci Eng J., 20 (2008) 175- 184.
  • B. Ersoy, M. S. Çelik, Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes, Micropor. Mesopor. Mat., 55 (2002) 305–312.
  • A. Rivera, T. Farías, L. C. de Ménorval, G. Autié-Castro, H. Y. Madeira, J. L. Contreras, M. A. Pérez, Acid natural clinoptilolite: Structural properties against adsorption/separation of n-paraffins, J. Colloid Interface Sci., 360 (2011) 220–226.
  • O.E. Petrov, Cation exchange in clinoptilolite: An X-Ray powder diffraction analysis, in: D. W. Ming, F.A. Mumpton (Eds.), Natural Zeolite’93: Occurrence, Properties, Use, International Committee on Natural Zeolites, Brockport, NY, 1995, pp. 271–279.
  • Doğal Zeolitlerin Katalizör ve Adsorbent Sentezi ve Ekonomik Açıdan Kullanılabilirlikleri, DPT Proje no 2003K12019014-5, 2005-2008.
  • J. Kaleta, Removal of phenol from aqueous solution by adsorption, Can. J. Civil Eng. 2006, 33, 5, 546-551.
  • S. Yapar, M. Yılmaz, Removal of Phenol by Using Montmorillonite, Clinoptilolite and Hydrotalcite. Adsorption, 10 (2005) 287-298.
  • S. AI-Asheh, F. Banat, L. Abu-Aitah, Adsorption of phenol using different types of activated bentonites. Sep. Purif. Technol., 33 (2003) 33, 1-10.
  • Donat R., Akdoğan A., Erdem E and H. Çetişli, Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, J. Colloid İnterf. Sci., 286 (2005) 43-52.
  • G. Varank, A. Demir, K. Yetilmezsoy, S. Top, E. Sekman, M.S. Bilgili, Removal of 4-nitrophenol from aqueoussolution by natural low-cost adsorbents, Indian Journal of Chemical Technology, 19 (2012) 7-25
  • Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  • M. Czaplicka, B. Kaczmarczyk, Infrared study of chlorophenols and products of their photodegradation, Talanta, 70 (2006) 940–949.

Aktive Edilmiş Klinoptilolit Kullanılarak Sulu Ortamdan Fenol ve Klorofenollerin Uzaklaştırılması

Year 2015, Volume: 43 Issue: 3, 235 - 249, 01.09.2015

Abstract

İ nsanlar açısından zehirli olması nedeniyle suyun kimyasal kirliliği çok geniş toksik bileşiklerden dolayı, özellikle aromatik moleküller, ciddi bir çevresel problemdir. Bu çalışmada, Manisa-Gördes bölgesinden alınan AMGC aktive edilmiş klinoptilolit, fenol ve klorofenollerin o-klorofenol, m-klorofenol ve p-klorofenol uzaklaştırılmasında araştırılmıştır. Klinoptilolit, FT-IR, TG/DTA, BET yüzey alanı, SEM, XRD ve XRF metodları yardımıyla karakterize edilmiştir. Fenol ve klorofenollerin adsorpsiyon hızları çok yüksektir ve yaklaşık 45 dakikada dengeye ulaşmıştır. Klinoptilolit üzerine fenol ve klorofenollerin maksimum adsorpsiyonu, fenol için 7.977 mg/g, o-klorofenol için 9.846 mg/g, m-klorofenol için 9.981 mg/g ve p-klorofenol için 8.241 mg/g’dır. Adsorbant dozajı, pH ve başlangıç derişimi gibi çeşitli parametrelerin etkisi optimize edilmiştir. Fenol ve klorofenollerin adsorpsiyon değerleri pH arttıkça azalmıştır. Fenol ve klorofenollerin desorpsiyonu için %30 v/v ’luk etanol çözeltisi kullanılmıştır. Fenol ve klorofenollerin adsorpsiyon hızları pH 6.25’de maksimum olarak bulunmuştur. Fenol ve klorofenoller için denge adsorpsiyon verileri, Freundlich ve Langmuir adsorpsiyon izotermleri kullanılarak analiz edilmiştir. En uygun modelin Freundlich adsorpsiyon izotermi olduğu bulunmuştur

References

  • M. P. Titus, V. G. Molina, M. A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B-Environ., 47 (2004) 219–256.
  • HEW Publication No. (N10SH), Center for Disease Control, N10SH, Washington, 1976.
  • M.W. Slein, E.B. Sansone, Degradation of Chemical Carcinogens, Van Nostrand Reinhold, New York, 1980.
  • N.N. Dutta, S. Borthakur, R. Baruah, A novel process for recovery of phenol from alkaline wastewater: laboratory study and predesign cost estimate, Water Environ. Res., 70 (1998) 4-9.
  • G. Bayramoğlu, M.Y. Arıca, Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads, J. Hazar. Mater., 156 (2008) 148–155.
  • S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, J. Environ. Manage., 90 (2009) 1336–1349.
  • Environmental Health Criteria 93: Chlorophenol Other Than Pentachlorophenol, World Health Organization, Geneva, 1989, 208.
  • International Programme on Chemical Safety (IPCS), Poisons Information Monograph (PIM), 1989, 405.
  • B. Bardakçı, FTIR-ATR Spectroscopic Characterization of Monochlorophenols and Effects of Symmetry on Vibrational Frequencies, Çankaya Üniversitesi Fen- Edebiyat Fakültesi, J. Art. Sci., 7 (2007) 13-19.
  • A. Denizli, G. Özkan, M. Uçar, Removal of chlorophenols from aquatic systems with dye-affinity microbeads, Sep. Purif. Technol., 24 (2001) 255–262.
  • D. Tang, Z. Zheng, K. Lin, J. Luan, J. Zhang, Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber, J. Hazar. Mater., 143 (2007) 49–56.
  • V. G. Molina, J. Kallas, S. Esplugas, Wet oxidation of 4-chlorophenol Kinetic study, Chem. Eng. J., 126 (2007) 59–65.
  • M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: A review, Adv. Colloid Interfac., 143 (2008) 48–67.
  • E.G. Furuya, H.T. Chang, Y. Miura, K.E. Noll, A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon, Sep. Purif. Technol., 111 (1997) 69-78.
  • A. Denizli, G. Özkan, M. Uçar, Microbeads for Removal of Phenols and Nitrophenols from Aquatic Systems, J. Appl. Polym. Sci., 83 (2002) 2411–2418.
  • S. Şenel, A. Kara, G. Alsancak, A. Denizli, Removal of phenol and chlorophenols from water with reusable dye-affinity hollow fibers, J. Hazar. Mater. B, 138 (2006) 317–324.
  • A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite, J. Hazar. Mater., 144 (2007) 307–315.
  • S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11–24.
  • S.P. Kamble, P.A. Mangrulkar, A.K. Bansiwal, S.S. Rayalu, Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chem. Eng. J., 138 (2008) 73–83.
  • M.L. Soto, A. Moure, H. Dominguez, J.C. Parajo, Recovery, concentration and purification of phenolic compounds by adsorption: A review, J. Food Eng., 105 (2011) 1–27.
  • R.I. Yousef, B. El-Eswed, The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite, Colloids Surface A., 334 (2009) 92–99.
  • L. Damjanovi, V. Raki, V. Rac, D. Stoši, A. Auroux, The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazar. Mater., 184 (2010) 477–484.
  • A. Denizli, N. Cihangir, N. Tüzmen, G. Alsancak, Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju, Bioresource Technol., 96 (2005) 59-62.
  • K. Tatsumi, S. Wada, H. Ichikawa, Removal of chlorophenols from wastewater by immobilized HPR, Biotechnol. Bioeng., 51 (1996) 126–130.
  • S. Uçar, Sulu Ortamda Bulunan Fenol ve Klorofenollerin Aktive Edilmiş Klinoptilolit Kullanılarak Uzaklaştırılması, Master Thesis, Afyon Kocatepe University, 2009.
  • M. Ghiaci, A. Abbaspur, R. Kiaa, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM- 41 Sep. Purif. Technol., 40 (2004) 217-219.
  • D.W. Breck, Zeolite molecular sieves: structure, chemistry, and use. New York: Wiley; 1974.
  • A.D. Bahaallddin, Ammonium and Lead Exchange in Clinoptilolite Zeolite Column, Master Thesis, METU, 2010
  • B.E. Alver, M. Sakızcı, E. Yörükoğulları, Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study J. Therm. Anal. Calorim., 100 (2010) 19–26.
  • A. Evcin, O. Tutkun, Pervaporation Separation of Ethanol-Water Mixtures by Zeolite Filled Polymeric Membranes, Ceram-Silikaty., 53 (2009) 250-253.
  • Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water, J. Hazard Mater., 97 (2003) 219-243.
  • F. Su, L. Lv, M.H. Tee, X.S. Zhao, Phenol adsorption on zeolite-templated porous carbons with different pore-structural and surface properties, Carbon., 43 (2005) 1156-1164.
  • T. Şişmanoglu, S. Pura, Adsorption of aqueous nitrophenols on clinoptilolite, Colloid Surface A., 180 (2001) 180, 1-6.
  • O. Korkuna, R. Leboda, J. Skubiszewska-Ziba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mat., 87 (2006) 243–254.
  • D. Ming and J. Dixon, Quantitative Determination of Clinoptilolite in Soils by a Cation-Exchange Capacity Method, Clay. Clay Miner., 35 (1987) 463-468.
  • M. Yılgın, D. Akkoca, “Bigadiç Klinoptilolitik Tüfün Kimyası, Yüzey Alanı ve Gözeneklilik Özelliklerine Farklı Asitlerin Etkilerinin İncelenmesi”, Sci Eng J., 20 (2008) 175- 184.
  • B. Ersoy, M. S. Çelik, Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes, Micropor. Mesopor. Mat., 55 (2002) 305–312.
  • A. Rivera, T. Farías, L. C. de Ménorval, G. Autié-Castro, H. Y. Madeira, J. L. Contreras, M. A. Pérez, Acid natural clinoptilolite: Structural properties against adsorption/separation of n-paraffins, J. Colloid Interface Sci., 360 (2011) 220–226.
  • O.E. Petrov, Cation exchange in clinoptilolite: An X-Ray powder diffraction analysis, in: D. W. Ming, F.A. Mumpton (Eds.), Natural Zeolite’93: Occurrence, Properties, Use, International Committee on Natural Zeolites, Brockport, NY, 1995, pp. 271–279.
  • Doğal Zeolitlerin Katalizör ve Adsorbent Sentezi ve Ekonomik Açıdan Kullanılabilirlikleri, DPT Proje no 2003K12019014-5, 2005-2008.
  • J. Kaleta, Removal of phenol from aqueous solution by adsorption, Can. J. Civil Eng. 2006, 33, 5, 546-551.
  • S. Yapar, M. Yılmaz, Removal of Phenol by Using Montmorillonite, Clinoptilolite and Hydrotalcite. Adsorption, 10 (2005) 287-298.
  • S. AI-Asheh, F. Banat, L. Abu-Aitah, Adsorption of phenol using different types of activated bentonites. Sep. Purif. Technol., 33 (2003) 33, 1-10.
  • Donat R., Akdoğan A., Erdem E and H. Çetişli, Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, J. Colloid İnterf. Sci., 286 (2005) 43-52.
  • G. Varank, A. Demir, K. Yetilmezsoy, S. Top, E. Sekman, M.S. Bilgili, Removal of 4-nitrophenol from aqueoussolution by natural low-cost adsorbents, Indian Journal of Chemical Technology, 19 (2012) 7-25
  • Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  • M. Czaplicka, B. Kaczmarczyk, Infrared study of chlorophenols and products of their photodegradation, Talanta, 70 (2006) 940–949.
There are 47 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Songül Uçar This is me

Atilla Evcin This is me

Mustafa Uçar This is me

Rafiğ Alibeyli This is me

Marek Majdan This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 43 Issue: 3

Cite

APA Uçar, S., Evcin, A., Uçar, M., Alibeyli, R., et al. (2015). Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. Hacettepe Journal of Biology and Chemistry, 43(3), 235-249.
AMA Uçar S, Evcin A, Uçar M, Alibeyli R, Majdan M. Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. HJBC. September 2015;43(3):235-249.
Chicago Uçar, Songül, Atilla Evcin, Mustafa Uçar, Rafiğ Alibeyli, and Marek Majdan. “Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite”. Hacettepe Journal of Biology and Chemistry 43, no. 3 (September 2015): 235-49.
EndNote Uçar S, Evcin A, Uçar M, Alibeyli R, Majdan M (September 1, 2015) Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. Hacettepe Journal of Biology and Chemistry 43 3 235–249.
IEEE S. Uçar, A. Evcin, M. Uçar, R. Alibeyli, and M. Majdan, “Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite”, HJBC, vol. 43, no. 3, pp. 235–249, 2015.
ISNAD Uçar, Songül et al. “Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite”. Hacettepe Journal of Biology and Chemistry 43/3 (September 2015), 235-249.
JAMA Uçar S, Evcin A, Uçar M, Alibeyli R, Majdan M. Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. HJBC. 2015;43:235–249.
MLA Uçar, Songül et al. “Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite”. Hacettepe Journal of Biology and Chemistry, vol. 43, no. 3, 2015, pp. 235-49.
Vancouver Uçar S, Evcin A, Uçar M, Alibeyli R, Majdan M. Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. HJBC. 2015;43(3):235-49.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc