BibTex RIS Cite

Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution

Year 2017, Volume: 45 Issue: 3, 375 - 383, 01.09.2017

Abstract

The aim of the study was comparatively to investigate decolourization of Rhodamine B RhB in aqueous solution using photocatalytic and ultrasonic processes. Also, computational investigations of RhB0 and RhB+- compounds were performed at HF/6-31G level in gas phase. Photocatalytic decolourization of RhB was studied using TiO2 and silver-loaded TiO2 Ag-TiO2 as catalyst. It was found that decolourization by photocatalytic process of RhB increased with decreasing pH, and decolourization rate also increased in the presence of TiO2/ UV when compared to UV irradiation alone. Moreover, Ag-loading to TiO2 dramatically reduced decolourization time. The decolourization by ultrasonic process of RhB was also studied by using various salts and initial dye concentrations at various pHs and amplitudes. The decolourization by ultrasonic process of RhB was found to increase with decreasing pH, increasing amplitudes and addition of various salts to aqueous solution. It was observed that the decolourization decreased with increasing initial RhB concentration. The decolourization rate of the dye was monitored spectrophotometrically at 554 nm.

References

  • 1. C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigments, 49 (2001) 117-125.
  • 2. Y. Ma, J. Yao, Photodegradation of Rhodamine B catalyzed by TiO2 thin films, J. Photoch. Photobiol. A., 116 (1998) 167-170.
  • 3. M. Muruganandham, M. Swaminathan, TiO2- UV photocatalytic oxidation of reactive yellow 14: Effect of operational parameters, J. Hazard. Mater. B., 135 (2006) 78-86.
  • 4. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891-2959.
  • 5. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735-758.
  • 6. D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants, Environ. Sci. Technol., 25 (1991) 1523-1529.
  • 7. T. Wu, T. Lin, J. Zhao, H. Hidaka and N. Serpone, TiO2- assisted photodegradation of dyes. 9: photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
  • 8. S. Kutsuna, M. Toma, K. Takeuchi, T. Ibusuki, Photocatalytic degradation of some perfluoroalkyl ethers on TiO2 particles in air: the dependence on the dark-adsorption, the products, and the implication for a possible tropospheric sink, Environ. Sci. Technol., 33 (1999) 1071–1076.
  • 9. M. Fox, M. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93 (1993) 341- 357.
  • 10. P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 93 (1993) 207-300.
  • 11. M. Sökmen, D.W. Allen, F. Akkaş, N. Kartal, F. Acar, Photo-degradation of some dyes using Ag-loaded titaniumdioxide, Water Air Soil Poll., 132 (2001) 153- 163.
  • 12. R. Kidak, N.H. Ince, Effects of operating parameters on sonochemical decomposition of phenol, J. Hazard. Mater., 137 (2006) 1453-1457.
  • 13. N.H. Ince, G. Tezcanlı-Güyer, Impacts of pH and molecular structure on ultrasonic degradation of azo dyes, Ultrasonics., 42 (2004) 591-596.
  • 14. E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos, Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation, Water Res., 38 (2004) 3751-3759.
  • 15. R.W. Ramette, E.B. Sandell, Rhodamine B equilibria, J. Am. Chem. S., 78 (1956) 4872–4877.
  • 16. M. Kondo, W. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst, Water Res., 25 (1991) 823–827.
  • 17. GaussView 5.0, Gaussian Inc. Wallingford, CT, USA, 2009.
  • 18. Gaussian 09, rev. D-01, Gaussian Inc. Wallingford, CT, USA, 2013.
  • 19. N.K. Temel, M. Sökmen, New catalyst systems for the degradation of chlorophenols, Desalination, 281 (2011) 209-214.
  • 20. S. Woislawski, The spectrophotometric determination of ionization constants of basic dyes, J. Am. Chem. Soc., 75 (1953) 5201–5203.
  • 21. X. Wang, Z. Yao, J. Wang, W. Guo, G. Li, Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation, Ultrason. Sonochem., 15 (2008) 43-48.
  • 22. S. Lodha, A. Jain, P.B. Punjabi, A novel route for waste water treatment: Photocatalytic degradation of rhodamine B, Arab.J. Chem., 4 (2011) 383-387.
  • 23. M. A. Behnajady, N. Modirshahla, S. Bavili Tabrizi, S. Molanee, Ultrasonic degradation of rhodamine B in aqueous solution: Influence of operational parameters, J. Hazard. Mater., 152 (2008) 381-386.
  • 24. M. A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Effect of operational parameters on degradation of malachite green by ultrasonic irradiation, Ultrason. Sonochem., 15 (2008) 1009–1014.
  • 25. J. D. Seymour, R. G. Gupta, Oxidation of aqueous pollutants using ultrasound: salt induced enhancement, Ind. Eng. Chem. Res., 36 (1997) 3453– 3457.
  • 26. S. Fındık, G. Gunduz, Sonolytic degradation of acetic acid in aqueous solutions, Ultrason. Sonochem., 14 (2007) 157–162.
  • 27. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives, Chem. Eng. J., 158 (2010) 550-557.
  • 28. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, C. Pétrier, Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase, J. Hazard. Mater., 175 (2010) 593-599.
  • 29. K. Sayin, D. Karakaş, Quantum chemical studies on the some inorganic corrosion inhibitors, Corros. Sci., 77 (2013) 37 – 45.
  • 30. K. Sayin, D. Karakas, N. Karakus, T. Alagöz Sayin, Z. Zaim, S. Erkan Kariper, Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: A DFT approach, Polyhedron., 90 (2015) 139-146.

Sulu Çözeltide Rodamin B’nin Renk Gideriminin Deneysel ve Hesaplamalı Araştırılması

Year 2017, Volume: 45 Issue: 3, 375 - 383, 01.09.2017

Abstract

B u çalışmanın amacı fotokatalitik ve ultrasonik yöntem ile sulu çözeltideki Rodamin B RhB ’nin renk gideriminin karşılaştırmalı olarak araştırılmasıdır. Ayrıca, RhB0 and RhB+- nin gaz fazında HF/6-31G seviyesindeki hesaplamalı araştırılması da yapılmıştır. RhB’nin fotokatalitik renk gideriminde TiO2 ve gümüş yüklü TiO2 Ag-TiO2 katalit olarak kullanılmıştır. RhB nin fotokatalitik yöntemle renk gideriminin azalan pH ile arttığı, ayrıca renk giderim oranının sadece UV ışığı ile ışınlamayla kıyaslandığında TiO2/UV varlığında daha da arttığı gözlenmiştir. Ag-yüklü TiO2 in kullanılması ise renk giderme zamanını önemli ölçüde azaltmıştır. RhB nin renk gideriminde çeşitli tuzların, farklı pH’larda boya başlangıç derişiminin ve ses dalgası şiddetinin etkisinin de araştırıldığı ultrasonik yöntemle de çalışılmıştır. RhB nin ultrasonik yöntemle renk gideriminin azalan pH, artan ses şiddeti ve sulu çözeltiye eklenilen çeşitli tuzların etkisiyle arttığı gözlenmiştir. Renk gideriminin RhB başlangıç derişiminin artmasıyla azaldığı gözlenmiştir. Boyanın renk giderim oranı 554 nm’de spektrofotometrik olarak izlenmiştir

References

  • 1. C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigments, 49 (2001) 117-125.
  • 2. Y. Ma, J. Yao, Photodegradation of Rhodamine B catalyzed by TiO2 thin films, J. Photoch. Photobiol. A., 116 (1998) 167-170.
  • 3. M. Muruganandham, M. Swaminathan, TiO2- UV photocatalytic oxidation of reactive yellow 14: Effect of operational parameters, J. Hazard. Mater. B., 135 (2006) 78-86.
  • 4. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891-2959.
  • 5. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735-758.
  • 6. D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants, Environ. Sci. Technol., 25 (1991) 1523-1529.
  • 7. T. Wu, T. Lin, J. Zhao, H. Hidaka and N. Serpone, TiO2- assisted photodegradation of dyes. 9: photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
  • 8. S. Kutsuna, M. Toma, K. Takeuchi, T. Ibusuki, Photocatalytic degradation of some perfluoroalkyl ethers on TiO2 particles in air: the dependence on the dark-adsorption, the products, and the implication for a possible tropospheric sink, Environ. Sci. Technol., 33 (1999) 1071–1076.
  • 9. M. Fox, M. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93 (1993) 341- 357.
  • 10. P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 93 (1993) 207-300.
  • 11. M. Sökmen, D.W. Allen, F. Akkaş, N. Kartal, F. Acar, Photo-degradation of some dyes using Ag-loaded titaniumdioxide, Water Air Soil Poll., 132 (2001) 153- 163.
  • 12. R. Kidak, N.H. Ince, Effects of operating parameters on sonochemical decomposition of phenol, J. Hazard. Mater., 137 (2006) 1453-1457.
  • 13. N.H. Ince, G. Tezcanlı-Güyer, Impacts of pH and molecular structure on ultrasonic degradation of azo dyes, Ultrasonics., 42 (2004) 591-596.
  • 14. E. Manousaki, E. Psillakis, N. Kalogerakis, D. Mantzavinos, Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation, Water Res., 38 (2004) 3751-3759.
  • 15. R.W. Ramette, E.B. Sandell, Rhodamine B equilibria, J. Am. Chem. S., 78 (1956) 4872–4877.
  • 16. M. Kondo, W. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst, Water Res., 25 (1991) 823–827.
  • 17. GaussView 5.0, Gaussian Inc. Wallingford, CT, USA, 2009.
  • 18. Gaussian 09, rev. D-01, Gaussian Inc. Wallingford, CT, USA, 2013.
  • 19. N.K. Temel, M. Sökmen, New catalyst systems for the degradation of chlorophenols, Desalination, 281 (2011) 209-214.
  • 20. S. Woislawski, The spectrophotometric determination of ionization constants of basic dyes, J. Am. Chem. Soc., 75 (1953) 5201–5203.
  • 21. X. Wang, Z. Yao, J. Wang, W. Guo, G. Li, Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation, Ultrason. Sonochem., 15 (2008) 43-48.
  • 22. S. Lodha, A. Jain, P.B. Punjabi, A novel route for waste water treatment: Photocatalytic degradation of rhodamine B, Arab.J. Chem., 4 (2011) 383-387.
  • 23. M. A. Behnajady, N. Modirshahla, S. Bavili Tabrizi, S. Molanee, Ultrasonic degradation of rhodamine B in aqueous solution: Influence of operational parameters, J. Hazard. Mater., 152 (2008) 381-386.
  • 24. M. A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Effect of operational parameters on degradation of malachite green by ultrasonic irradiation, Ultrason. Sonochem., 15 (2008) 1009–1014.
  • 25. J. D. Seymour, R. G. Gupta, Oxidation of aqueous pollutants using ultrasound: salt induced enhancement, Ind. Eng. Chem. Res., 36 (1997) 3453– 3457.
  • 26. S. Fındık, G. Gunduz, Sonolytic degradation of acetic acid in aqueous solutions, Ultrason. Sonochem., 14 (2007) 157–162.
  • 27. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives, Chem. Eng. J., 158 (2010) 550-557.
  • 28. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, C. Pétrier, Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase, J. Hazard. Mater., 175 (2010) 593-599.
  • 29. K. Sayin, D. Karakaş, Quantum chemical studies on the some inorganic corrosion inhibitors, Corros. Sci., 77 (2013) 37 – 45.
  • 30. K. Sayin, D. Karakas, N. Karakus, T. Alagöz Sayin, Z. Zaim, S. Erkan Kariper, Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: A DFT approach, Polyhedron., 90 (2015) 139-146.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nuket Kartal Temel This is me

Koray Sayın This is me

Publication Date September 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 3

Cite

APA Kartal Temel, N., & Sayın, K. (2017). Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution. Hacettepe Journal of Biology and Chemistry, 45(3), 375-383.
AMA Kartal Temel N, Sayın K. Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution. HJBC. September 2017;45(3):375-383.
Chicago Kartal Temel, Nuket, and Koray Sayın. “Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution”. Hacettepe Journal of Biology and Chemistry 45, no. 3 (September 2017): 375-83.
EndNote Kartal Temel N, Sayın K (September 1, 2017) Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution. Hacettepe Journal of Biology and Chemistry 45 3 375–383.
IEEE N. Kartal Temel and K. Sayın, “Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution”, HJBC, vol. 45, no. 3, pp. 375–383, 2017.
ISNAD Kartal Temel, Nuket - Sayın, Koray. “Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution”. Hacettepe Journal of Biology and Chemistry 45/3 (September 2017), 375-383.
JAMA Kartal Temel N, Sayın K. Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution. HJBC. 2017;45:375–383.
MLA Kartal Temel, Nuket and Koray Sayın. “Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 3, 2017, pp. 375-83.
Vancouver Kartal Temel N, Sayın K. Experimental and Computational Investigations of Decolourization of Rhodamine B in Aqueous Solution. HJBC. 2017;45(3):375-83.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc