Research Article
BibTex RIS Cite

The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım

Year 2022, Volume: 50 Issue: 2, 131 - 142, 28.02.2022
https://doi.org/10.15671/hjbc.892592

Abstract

Abstract
Increased activity of aldose reductase (AR) and sorbitol dehydrogenase (SDH) are the major causes of diabetic complications. Thus, inhibition of these two enzymes is vital in preventing diabetic complications. As the synthesis of new and effective AR and SDH enzyme inhibitors is quite difficult, we have investigated the inhibition effects of antibiotics, which are already widely used in medicine, on AR and SDH enzymes. AR and SDH enzymes were purified from bovine kidney, in vitro effects of antibiotics on enzymes were determined, and molecular docking simulations were carried out to understand inhibition mechanisms. The antibiotics ampicillin and amikacin inhibited both AR and SDH enzymes at very low concentrations. The best inhibitors for AR were found to be ceftriaxone, tylosin, and metronidazole with IC50 values of 28.75 µM, 49.28 µM and 58.42 µM, respectively. The best inhibitors for SDH were seen to be amikacin, ampicillin, and ceftazidime with IC50 values of 2.4 mM, 2.62 mM, and 3.76 mM, respectively. The results of inhibition and docking studies showed that antibiotics are highly effective on these enzymes. The results obtained can be used as a reference for synthesizing better inhibitors in future studies.
Öz
Aldoz redüktaz (AR) ve sorbitol dehidrogenazın (SDH) artan aktivitesi, diyabetik komplikasyonların başlıca nedenleridir. Bu nedenle, bu iki enzimin inhibisyonu, diyabetik komplikasyonların önlenmesinde hayati önem taşımaktadır. Çalışmamızda, yeni ve etkili AR ve SDH enzim inhibitörlerinin sentezi oldukça zor olduğundan, halihazırda tıpta yaygın olarak kullanılan antibiyotiklerin AR ve SDH enzimleri üzerindeki inhibisyon etkileri araştırılmıştır. AR ve SDH enzimleri sığır böbreğinden saflaştırılmış, antibiyotiklerin enzimler üzerindeki in vitro etkileri belirlenmiş ve inhibisyon mekanizmalarının aydınlatılması amacıyla moleküler docking simülasyonları gerçekleştirilmiştir. Ampisilin ve amikasin antibiyotikleri hem AR hem de SDH enzimlerini çok düşük konsantrasyonlarda inhibe etmiştir. AR için en iyi inhibitörlerin sırasıyla 28.75 µM, 49.28 µM ve 58.42 µM IC50 değerleri ile seftriakson, tylosin ve metronidazol antibiyotikleri olduğu bulunmuştur. En iyi SDH inhibitörlerinin sırasıyla 2,4 mM, 2,62 mM ve 3,76 mM IC50 değerleri ile amikasin, ampisilin ve seftazidim olduğu görülmüştür. İnhibisyon ve docking çalışmalarının sonuçları, antibiyotiklerin bu enzimler üzerinde oldukça etkili olduğunu göstermiştir. Elde edilen sonuçlar, gelecekteki çalışmalarda daha iyi inhibitörlerin sentezlenmesi için referans olarak kullanılabileceği düşünülmektedir.

References

  • 1. J. A. Fain, Understanding diabetes mellitus and kidney disease. Nephrol. Nurs. J. 36 (2009) 465.
  • 2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care, 37(2014) 81-90.
  • 3. R.G. González, P. Barnett, J. Aguayo, H.M. Cheng, L.T. Chylack, Direct measurement of polyol pathway activity in the ocular lens. Diabetes, 33(1984) 196-199.
  • 4. T. Nishikawa, D. Edelstein, X.L. Du, S.I. Yamagishi, T. Matsumura, Y. Kaneda, I. Giardino, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404 (2000) 787.
  • 5. S.K. Srivastava, K.V. Ramana, A. Bhatnagar, Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 26(2005) 380-392.
  • 6. B. Tesfamariam, Free radicals in diabetic endothelial cell dysfunction. Free Radic. Biol. Med., 16(1994) 383-391.
  • 7. E.M. Kurowska, Nitric oxide therapies in vascular diseases. Curr. Pharm. Des., 8(2002) 155-166.
  • 8. R. Ramasamy, H. Liu, P.J. Oates, S. Schaefer, Attenuation of ischemia induced increases in sodium and calcium by the aldose reductase inhibitor zopolrestat. Cardiovasc. Res., 42(1999), 130-139.
  • 9. Y.C. Hwang, S. Sato, J.Y. Tsai, S. Yan, S. Bakr, H. Zhang, R. Ramasamy, Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J., 16(2002) 243-245.
  • 10. K.V. Ramana, S.K. Srivastava, Mediation of aldose reductase in lipopolysaccharide-induced inflammatory signals in mouse peritoneal macrophages. Cytokine., 36(2006) 115-122.
  • 11. W.T. Regenold, M.A. Kling, P. Hauser, Elevated sorbitol concentration in the cerebrospinal fluid of patients with mood disorders. Psychoneuroendocrinology, 25(2000), 593-606.
  • 12. W.T. Regenold, P. Phatak, M.A. Kling, P. Hauser, Post-mortem evidence from human brain tissue of disturbed glucose metabolism in mood and psychotic disorders. Mol. Psychiatry., 9(2004) 731.
  • 13. P. Alexiou, K. Pegklidou, M. Chatzopoulou, I. Nicolaou, V.J. Demopoulos, Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr. Med. Chem., 16(2009) 734-752.
  • 14. W.R. Meyer, M.B. Doyle, J.A. Grifo, K.J. Lipetz, P.J. Oates, A.H. DeCherney, M. P. Diamond, Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am. J. Obstet. Gynecol., 167(1992) 1837-1843.
  • 15. G.T. Berry, The role of polyols in the pathophysiology of hypergalactosemia. Eur. J. Pediatr., 154(1995) 53-64.
  • 16. K.W. Lee, B.C. Ko, Z. Jiang, D. Cao, S.S. Chung, Overexpression of aldose reductase in liver cancers may contribute to drug resistance. Anti-cancer drugs., 12(2001) 129-132.
  • 17. M. Saraswat, T. Mrudula, P.U. Kumar, A. Suneetha, T.S. Rao, M. Srinivasulu, G. B. Reddy, Overexpression of aldose reductase in human cancer tissues. Med. Sci. Monit., 12 (2006) 525-529.
  • 18. R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase regulates TNF-α-induced PGE2 production in human colon cancer cells. Cancer Lett., 252 (2007) 299-306. 19. M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature, 414(2001) 813.
  • 20. S. Miyamoto, Molecular modeling and structure-based drug discovery studies of aldose reductase inhibitors. Chem. Bio. Informat. J., 2(2002) 74-85.
  • 21. Y.S. Kim, N.H. Kim, D.H. Jung, D.S. Jang, Y.M. Lee, J.M. Kim, J.S. Kim, Genistein inhibits aldose reductase activity and high glucose-induced TGF-β2 expression in human lens epithelial cells. Eur. J. Pharmacol., 594(2008) 18-25.
  • 22. J. Jin, P.A. Krishack, D. Cao, Role of aldo-keto reductases in development of prostate and breast cancer. Front. Biosci., 11(2006) 2767-2773.
  • 23. R. Tammali, K.V. Ramana, S.S. Singhal, S. Awasthi, S.K. Srivastava, Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res., 66(2006) 9705-9713.
  • 24. C. Zhang, X. Li, Q. Liu, Sorbitol dehydrogenase inhibitor protects the liver from ischemia/reperfusion-induced injury via elevated glycolytic flux and enhanced sirtuin 1 activity. Mol. Med. Rep., 11(2015) 283-288.
  • 25. S. Amano, S.I. Yamagishi, N. Kato, Y. Inagaki, T. Okamoto, M. Makino, M.Takeuchi, Sorbitol dehydrogenase overexpression potentiates glucose toxicity to cultured retinal pericytes. Biochem. Biophys. Res. Commun., 299(2002) 183-188.
  • 26. R.G.Tilton, K. Chang, J.R. Nyengaard, M. van den Enden, Y. Ido, J.R.Williamson, Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin induced diabetic rats. Diabetes., 44(1995) 234–42.
  • 27. K.J. Cerelli, D.L. Curtis, J.P. Dunn, P.H. Nelson, T.M. Peak, L.D. Waterbury, Antiinflammatory and aldose reductase inhibitory activity of sometricyclic arylacetic acids. J. Med. Chem., 29(1986) 2347-2351.
  • 28. Z. Alim, N. Kilinç, B. Şengül, Ş. Beydemir, Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. J. Enzyme. Inhib. Med. Chem., 32(2017) 277-284.
  • 29. Z. Alım, Ş. Beydemir, Effects of some anti-neoplastic drugs on sheep liver sorbitol dehydrogenase. Arch. Physiol. Biochem., 118(2012) 244-252. 30. Ş. Beydemir, İ. Gülçin, O. Hisar, Ö.İ. Küfrevioğlu, T. Yanik, Effect of melatonin on glucose-6-phosphate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. J. Appl. Anim. Res., 28(2005) 65-68.
  • 31. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1976) 248-254.
  • 32. H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc., 56(1934) 658-666. 33. 33. Schrödinger Release 2020-3: Schrödinger, LLC, New York, NY, 2020.
  • 34. G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 27(2013) 221-234.
  • 35. R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, P.S. Shenkin, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47(2004) 1739-1749.
  • 36. T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 47(2004) 1750-1759.
  • 37. Z.M. Xiu, L.P. Wang, J. Fu, J. Xu, L. Liu, 1-Acetyl-5-phenyl-1H-pyrrol-3-ylacetate: An aldose reductase inhibitor for the treatment of diabetic nephropathy. Bioorg. Med. Chem. Lett., 27(2017) 4482-4487.
  • 38. X. Hu, S. Li, G. Yang, H. Liu, G. Boden, L. Li, Efficacy and safety of aldose reductase inhibitor for the treatment of diabetic cardiovascular autonomic neuropathy: systematic review and meta-analysis. PLoS One., 9(2014) 87096.
  • 39. S.V. Bhadada, V.K. Vyas, R.K. Goyal, Protective effect of Tephrosia purpurea in diabetic cataract through aldose reductase inhibitory activity. Biomed. Pharmacother., 83(2016) 221-228.
  • 40. K.C. Chang, A. Snow, D.V. LaBarbera, J.M. Petrash, Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact., 234(2015) 254-260.
  • 41. R.K. Vikramadithyan, Y. Hu, H.L. Noh, C.P. Liang, K. Hallam, A.R. Tall, R. Ramasamy, I.J. Goldberg, Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest., 115(2005) 2434-2443.
  • 42. M. Hanefeld, S. Fischer, U. Julius, J. Schulze, U. Schwanebeck, H. Schmechel, DIS Group, Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia, 39(1996) 1577-1583.
  • 43. G.J. Viberti, Thiazolidinediones-benefits on microvascular complications of type 2 diabetes. J. Diabetes Complicat., 19(2005) 168.
  • 44. M.S. Prnova, J. Ballekova, A. Gajdosikova, A. Gajdosik, M. Stefek, A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats. Physiol. Res., 64(2015) 587.
  • 45. R. Maccari, R. Ottanà, Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: new insights and future directions. J. Med. Chem., 58(2014) 2047-2067.
  • 46. R. Sarges, R.C. Schnur, J.L. Belletire, M.J. Peterson, Spiro Hydantoin Aldose Reductase Inhibitor. J. Med. Chem., 31(1988) 230-243.
  • 47. C. A. Lipinski, C.E. Aldinger, T.A. Beyer, J. Bordner, D.F. Burdi, D.L. Bussolotti, P.B. Inskeep, T.W. Siegel, Hydantoin Bioisosteres. In Vivo Active Spiro Hydroxy Acetic Acid Aldose Reductase Inhibitors. J. Med. Chem., 35(1992) 2169-2177.
  • 48. S. Suzen, E. Buyukbingol, Recent Studies of Aldose Reductase Enzyme Inhibition for Diabetic Complications. Curr. Med. Chem., 10(2003) 1329-1352.
  • 49. K. Sestanj, F. Bellini, S. Fung, N. Abraham, A. Treasurywala, L. Humber, N. Simard-Duquesne, D. Dvornik, N-[[5- (Trifluoromethyl)- 6-methoxy-1- naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a Potent, Orally Active Aldose Reductase Inhibitor. J. Med. Chem., 27(1984) 255-256.
  • 50. B.L. Mylari, E.R. Larson, T.A. Beyer, W.J. Zembrowski, C.E. Aldinger, M.F. Dee, T.W. Siegel, D.H. Singleton, Novel, Potent Aldose Reductase Inhibitors: 3,4-Dihydro-4-oxo-3-[[5- (trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazine-acetic Acid (Zopolrestat) and Congeners. J. Med. Chem., 34(1991) 108-122.
  • 51. N. Hotta, T. Toyota, K. Matsuoka, Y. Shigeta, R. Kikkawa, T. Kaneko, A. Takahashi, K. Sugimura, Y. Koike, J. Ishii, N. Sakamoto, Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy. Diabetes Care., 24(2001) 1776-1782.
  • 52. K.E. Schemmel, R.S. Padiyara, J. J. D’Souza, Aldose Reductase Inhibitors in the Treatment of Diabetic Peripheral Neuropathy: a Review. J. Diabet. Complicat., 24(2010) 354-360.
  • 53. N. Hotta, K. Yasuda, Y. Sumita, T. Sano, H. Kakuta, M. Nagashima, Y. Hayashi, M. Yamamoto, T. Wakao, M. Okuyama, M. Kobayashi, K. Mori, Effects of a novel aldose reductase inhibitor, fidarestat (SNK-860), on vibration perception threshold and subjective symptoms in patients with diabetic polyneuropathy. Clin. Drug Invest., 24(2004) 671-680.
  • 54. A. Urzhumtsev, F. Tete-Favier, A. Mitschler, J. Barbanton, P. Barth, L. Urzhumtseva, D. Moras, A ‘specificity’pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure, 5(1997) 601-612.
Year 2022, Volume: 50 Issue: 2, 131 - 142, 28.02.2022
https://doi.org/10.15671/hjbc.892592

Abstract

References

  • 1. J. A. Fain, Understanding diabetes mellitus and kidney disease. Nephrol. Nurs. J. 36 (2009) 465.
  • 2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care, 37(2014) 81-90.
  • 3. R.G. González, P. Barnett, J. Aguayo, H.M. Cheng, L.T. Chylack, Direct measurement of polyol pathway activity in the ocular lens. Diabetes, 33(1984) 196-199.
  • 4. T. Nishikawa, D. Edelstein, X.L. Du, S.I. Yamagishi, T. Matsumura, Y. Kaneda, I. Giardino, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404 (2000) 787.
  • 5. S.K. Srivastava, K.V. Ramana, A. Bhatnagar, Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 26(2005) 380-392.
  • 6. B. Tesfamariam, Free radicals in diabetic endothelial cell dysfunction. Free Radic. Biol. Med., 16(1994) 383-391.
  • 7. E.M. Kurowska, Nitric oxide therapies in vascular diseases. Curr. Pharm. Des., 8(2002) 155-166.
  • 8. R. Ramasamy, H. Liu, P.J. Oates, S. Schaefer, Attenuation of ischemia induced increases in sodium and calcium by the aldose reductase inhibitor zopolrestat. Cardiovasc. Res., 42(1999), 130-139.
  • 9. Y.C. Hwang, S. Sato, J.Y. Tsai, S. Yan, S. Bakr, H. Zhang, R. Ramasamy, Aldose reductase activation is a key component of myocardial response to ischemia. FASEB J., 16(2002) 243-245.
  • 10. K.V. Ramana, S.K. Srivastava, Mediation of aldose reductase in lipopolysaccharide-induced inflammatory signals in mouse peritoneal macrophages. Cytokine., 36(2006) 115-122.
  • 11. W.T. Regenold, M.A. Kling, P. Hauser, Elevated sorbitol concentration in the cerebrospinal fluid of patients with mood disorders. Psychoneuroendocrinology, 25(2000), 593-606.
  • 12. W.T. Regenold, P. Phatak, M.A. Kling, P. Hauser, Post-mortem evidence from human brain tissue of disturbed glucose metabolism in mood and psychotic disorders. Mol. Psychiatry., 9(2004) 731.
  • 13. P. Alexiou, K. Pegklidou, M. Chatzopoulou, I. Nicolaou, V.J. Demopoulos, Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr. Med. Chem., 16(2009) 734-752.
  • 14. W.R. Meyer, M.B. Doyle, J.A. Grifo, K.J. Lipetz, P.J. Oates, A.H. DeCherney, M. P. Diamond, Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am. J. Obstet. Gynecol., 167(1992) 1837-1843.
  • 15. G.T. Berry, The role of polyols in the pathophysiology of hypergalactosemia. Eur. J. Pediatr., 154(1995) 53-64.
  • 16. K.W. Lee, B.C. Ko, Z. Jiang, D. Cao, S.S. Chung, Overexpression of aldose reductase in liver cancers may contribute to drug resistance. Anti-cancer drugs., 12(2001) 129-132.
  • 17. M. Saraswat, T. Mrudula, P.U. Kumar, A. Suneetha, T.S. Rao, M. Srinivasulu, G. B. Reddy, Overexpression of aldose reductase in human cancer tissues. Med. Sci. Monit., 12 (2006) 525-529.
  • 18. R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase regulates TNF-α-induced PGE2 production in human colon cancer cells. Cancer Lett., 252 (2007) 299-306. 19. M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature, 414(2001) 813.
  • 20. S. Miyamoto, Molecular modeling and structure-based drug discovery studies of aldose reductase inhibitors. Chem. Bio. Informat. J., 2(2002) 74-85.
  • 21. Y.S. Kim, N.H. Kim, D.H. Jung, D.S. Jang, Y.M. Lee, J.M. Kim, J.S. Kim, Genistein inhibits aldose reductase activity and high glucose-induced TGF-β2 expression in human lens epithelial cells. Eur. J. Pharmacol., 594(2008) 18-25.
  • 22. J. Jin, P.A. Krishack, D. Cao, Role of aldo-keto reductases in development of prostate and breast cancer. Front. Biosci., 11(2006) 2767-2773.
  • 23. R. Tammali, K.V. Ramana, S.S. Singhal, S. Awasthi, S.K. Srivastava, Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res., 66(2006) 9705-9713.
  • 24. C. Zhang, X. Li, Q. Liu, Sorbitol dehydrogenase inhibitor protects the liver from ischemia/reperfusion-induced injury via elevated glycolytic flux and enhanced sirtuin 1 activity. Mol. Med. Rep., 11(2015) 283-288.
  • 25. S. Amano, S.I. Yamagishi, N. Kato, Y. Inagaki, T. Okamoto, M. Makino, M.Takeuchi, Sorbitol dehydrogenase overexpression potentiates glucose toxicity to cultured retinal pericytes. Biochem. Biophys. Res. Commun., 299(2002) 183-188.
  • 26. R.G.Tilton, K. Chang, J.R. Nyengaard, M. van den Enden, Y. Ido, J.R.Williamson, Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin induced diabetic rats. Diabetes., 44(1995) 234–42.
  • 27. K.J. Cerelli, D.L. Curtis, J.P. Dunn, P.H. Nelson, T.M. Peak, L.D. Waterbury, Antiinflammatory and aldose reductase inhibitory activity of sometricyclic arylacetic acids. J. Med. Chem., 29(1986) 2347-2351.
  • 28. Z. Alim, N. Kilinç, B. Şengül, Ş. Beydemir, Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. J. Enzyme. Inhib. Med. Chem., 32(2017) 277-284.
  • 29. Z. Alım, Ş. Beydemir, Effects of some anti-neoplastic drugs on sheep liver sorbitol dehydrogenase. Arch. Physiol. Biochem., 118(2012) 244-252. 30. Ş. Beydemir, İ. Gülçin, O. Hisar, Ö.İ. Küfrevioğlu, T. Yanik, Effect of melatonin on glucose-6-phosphate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. J. Appl. Anim. Res., 28(2005) 65-68.
  • 31. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1976) 248-254.
  • 32. H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc., 56(1934) 658-666. 33. 33. Schrödinger Release 2020-3: Schrödinger, LLC, New York, NY, 2020.
  • 34. G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 27(2013) 221-234.
  • 35. R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, P.S. Shenkin, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47(2004) 1739-1749.
  • 36. T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 47(2004) 1750-1759.
  • 37. Z.M. Xiu, L.P. Wang, J. Fu, J. Xu, L. Liu, 1-Acetyl-5-phenyl-1H-pyrrol-3-ylacetate: An aldose reductase inhibitor for the treatment of diabetic nephropathy. Bioorg. Med. Chem. Lett., 27(2017) 4482-4487.
  • 38. X. Hu, S. Li, G. Yang, H. Liu, G. Boden, L. Li, Efficacy and safety of aldose reductase inhibitor for the treatment of diabetic cardiovascular autonomic neuropathy: systematic review and meta-analysis. PLoS One., 9(2014) 87096.
  • 39. S.V. Bhadada, V.K. Vyas, R.K. Goyal, Protective effect of Tephrosia purpurea in diabetic cataract through aldose reductase inhibitory activity. Biomed. Pharmacother., 83(2016) 221-228.
  • 40. K.C. Chang, A. Snow, D.V. LaBarbera, J.M. Petrash, Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact., 234(2015) 254-260.
  • 41. R.K. Vikramadithyan, Y. Hu, H.L. Noh, C.P. Liang, K. Hallam, A.R. Tall, R. Ramasamy, I.J. Goldberg, Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest., 115(2005) 2434-2443.
  • 42. M. Hanefeld, S. Fischer, U. Julius, J. Schulze, U. Schwanebeck, H. Schmechel, DIS Group, Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia, 39(1996) 1577-1583.
  • 43. G.J. Viberti, Thiazolidinediones-benefits on microvascular complications of type 2 diabetes. J. Diabetes Complicat., 19(2005) 168.
  • 44. M.S. Prnova, J. Ballekova, A. Gajdosikova, A. Gajdosik, M. Stefek, A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats. Physiol. Res., 64(2015) 587.
  • 45. R. Maccari, R. Ottanà, Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: new insights and future directions. J. Med. Chem., 58(2014) 2047-2067.
  • 46. R. Sarges, R.C. Schnur, J.L. Belletire, M.J. Peterson, Spiro Hydantoin Aldose Reductase Inhibitor. J. Med. Chem., 31(1988) 230-243.
  • 47. C. A. Lipinski, C.E. Aldinger, T.A. Beyer, J. Bordner, D.F. Burdi, D.L. Bussolotti, P.B. Inskeep, T.W. Siegel, Hydantoin Bioisosteres. In Vivo Active Spiro Hydroxy Acetic Acid Aldose Reductase Inhibitors. J. Med. Chem., 35(1992) 2169-2177.
  • 48. S. Suzen, E. Buyukbingol, Recent Studies of Aldose Reductase Enzyme Inhibition for Diabetic Complications. Curr. Med. Chem., 10(2003) 1329-1352.
  • 49. K. Sestanj, F. Bellini, S. Fung, N. Abraham, A. Treasurywala, L. Humber, N. Simard-Duquesne, D. Dvornik, N-[[5- (Trifluoromethyl)- 6-methoxy-1- naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a Potent, Orally Active Aldose Reductase Inhibitor. J. Med. Chem., 27(1984) 255-256.
  • 50. B.L. Mylari, E.R. Larson, T.A. Beyer, W.J. Zembrowski, C.E. Aldinger, M.F. Dee, T.W. Siegel, D.H. Singleton, Novel, Potent Aldose Reductase Inhibitors: 3,4-Dihydro-4-oxo-3-[[5- (trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazine-acetic Acid (Zopolrestat) and Congeners. J. Med. Chem., 34(1991) 108-122.
  • 51. N. Hotta, T. Toyota, K. Matsuoka, Y. Shigeta, R. Kikkawa, T. Kaneko, A. Takahashi, K. Sugimura, Y. Koike, J. Ishii, N. Sakamoto, Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy. Diabetes Care., 24(2001) 1776-1782.
  • 52. K.E. Schemmel, R.S. Padiyara, J. J. D’Souza, Aldose Reductase Inhibitors in the Treatment of Diabetic Peripheral Neuropathy: a Review. J. Diabet. Complicat., 24(2010) 354-360.
  • 53. N. Hotta, K. Yasuda, Y. Sumita, T. Sano, H. Kakuta, M. Nagashima, Y. Hayashi, M. Yamamoto, T. Wakao, M. Okuyama, M. Kobayashi, K. Mori, Effects of a novel aldose reductase inhibitor, fidarestat (SNK-860), on vibration perception threshold and subjective symptoms in patients with diabetic polyneuropathy. Clin. Drug Invest., 24(2004) 671-680.
  • 54. A. Urzhumtsev, F. Tete-Favier, A. Mitschler, J. Barbanton, P. Barth, L. Urzhumtseva, D. Moras, A ‘specificity’pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure, 5(1997) 601-612.
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Namık Kılınç 0000-0002-9102-1370

Şükrü Beydemir 0000-0003-3667-6902

Publication Date February 28, 2022
Acceptance Date October 3, 2021
Published in Issue Year 2022 Volume: 50 Issue: 2

Cite

APA Kılınç, N., & Beydemir, Ş. (2022). The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım. Hacettepe Journal of Biology and Chemistry, 50(2), 131-142. https://doi.org/10.15671/hjbc.892592
AMA Kılınç N, Beydemir Ş. The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım. HJBC. February 2022;50(2):131-142. doi:10.15671/hjbc.892592
Chicago Kılınç, Namık, and Şükrü Beydemir. “The Role of Antibiotics in the Management of the Polyol Pathway: An In Vitro and In Silico Approach Poliol Yolunun Antibiyotikler Yoluyla kontrolü: Bir in Vitro Ve in Siliko yaklaşım”. Hacettepe Journal of Biology and Chemistry 50, no. 2 (February 2022): 131-42. https://doi.org/10.15671/hjbc.892592.
EndNote Kılınç N, Beydemir Ş (February 1, 2022) The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım. Hacettepe Journal of Biology and Chemistry 50 2 131–142.
IEEE N. Kılınç and Ş. Beydemir, “The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım”, HJBC, vol. 50, no. 2, pp. 131–142, 2022, doi: 10.15671/hjbc.892592.
ISNAD Kılınç, Namık - Beydemir, Şükrü. “The Role of Antibiotics in the Management of the Polyol Pathway: An In Vitro and In Silico Approach Poliol Yolunun Antibiyotikler Yoluyla kontrolü: Bir in Vitro Ve in Siliko yaklaşım”. Hacettepe Journal of Biology and Chemistry 50/2 (February 2022), 131-142. https://doi.org/10.15671/hjbc.892592.
JAMA Kılınç N, Beydemir Ş. The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım. HJBC. 2022;50:131–142.
MLA Kılınç, Namık and Şükrü Beydemir. “The Role of Antibiotics in the Management of the Polyol Pathway: An In Vitro and In Silico Approach Poliol Yolunun Antibiyotikler Yoluyla kontrolü: Bir in Vitro Ve in Siliko yaklaşım”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 2, 2022, pp. 131-42, doi:10.15671/hjbc.892592.
Vancouver Kılınç N, Beydemir Ş. The role of antibiotics in the management of the polyol pathway: An In Vitro and In Silico approach Poliol yolunun antibiyotikler yoluyla kontrolü: Bir in vitro ve in siliko yaklaşım. HJBC. 2022;50(2):131-42.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc